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Classification of psychedelics and
psychoactive drugs based on brain-wide
imaging of cellular c-Fos expression

FaridAboharb1,2,10, PashaA.Davoudian 1,3,4,10, Ling-XiaoShao 1,5, Clara Liao1,3,
Gillian N. Rzepka1, Cassandra Wojtasiewicz1, Jonathan Indajang1, Mark Dibbs 5,
Jocelyne Rondeau5, Alexander M. Sherwood6, Alfred P. Kaye5,7,8 &
Alex C. Kwan 1,5,9

Psilocybin, ketamine, and MDMA are psychoactive compounds that exert
behavioral effects with distinguishable but also overlapping features. The
growing interest in using these compounds as therapeutics necessitates pre-
clinical assays that can accurately screen psychedelics and related analogs.We
posit that a promising approachmay be tomeasure drug action onmarkers of
neural plasticity in native brain tissues. We therefore developed a pipeline for
drug classification using light sheet fluorescence microscopy of immediate
early gene expression at cellular resolution followed by machine learning. We
tested male and female mice with a panel of drugs, including psilocybin,
ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluox-
etine, and vehicle. In one-versus-rest classification, the exact drug was identi-
fied with 67% accuracy, significantly above the chance level of 12.5%. In one-
versus-one classifications, psilocybin was discriminated from 5-MeO-DMT,
ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley
additive explanation to pinpoint the brain regions driving the machine learn-
ing predictions. Our results suggest a unique approach for characterizing and
validating psychoactive drugs with psychedelic properties.

Psychedelics include classic serotonergic psychedelics, such as psilo-
cybin and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and
related psychoactive compounds, such as ketamine and 3,4-methyl
enedioxy methamphetamine (MDMA). These compounds have
recently gained widespread interest as potential therapeutics for
neuropsychiatric disorders1,2. Psilocybin with psychological support is
under active investigation as a treatment formajor depressive disorder
and treatment-resistant depression3–7. Subanesthetic ketamine has

long been studied for its efficacy in treating depression8–10 and post-
traumatic stress disorder (PTSD)11. The research efforts culminated in
the approval of esketamine nasal spray by the FDA in the United States
for treatment-resistant depression12,13. Finally, MDMA-assisted psy-
chotherapy has undergone phase III clinical trials for the treatment of
moderate to severe PSTD14,15. The clinical relevance has sparked
intense interest in understanding the shared and distinct aspects of
these compounds’ mechanisms of action.
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Beyond the known psychedelics, there is also growing excitement
for synthesizing novel psychedelic-inspired analogs that can be new
chemical entities for therapeutics16–18. Ideally, the novel compounds
would retain therapeutic effects while improving pharmacokinetics,
minimizing perceptual effects, and eliminating cardiovascular risks. A
major roadblock in this pursuit lies in developing screens that can filter
thousands of psychedelic-inspired analogs to a manageable list of the
most promising compounds for further in-depth characterizations.
Currently, most screens operate at the molecular or behavioral level.
At the molecular level, candidate compounds can be docked in silico
with the structure of the 5-HT2A receptor, followed by biochemical
measurements of receptor engagement and activation of downstream
G-protein and beta-arrestin pathways. This target-based approach has
yielded exciting leads19–22, but assumes that the 5-HT2A receptor is the
key mediator of the therapeutic effect, which has not been proven
conclusively. At the behavioral level, candidate compounds may be
tested in animals for defined phenotypes. Simple characterizations
such as changes in animal movement patterns may be automated to
increase throughput and accuracy23,24. However, more complex beha-
vioral assays relevant for depression suffer from limitations, including
poor construct validity and weak predictive power for drug efficacy in
humans25.

The development of a new screening method may complement
current molecular and behavioral approaches to accelerate preclinical
drug discovery. Classic psychedelics and ketamine share the ability to
enhance neural plasticity in the brain26, as evidenced by the rapid and
persistent growth of dendritic spines in the rodent medial frontal
cortex after a single dose of ketamine27,28, psilocybin29, and related
serotonergic receptor agonists30–33. A promising approach may thus
focus on quantifying indicators of neural plasticity in native brain tis-
sues. To this end, immediate early genes are activated in a cell in
response to increased firing activity or an external stimulus34. The
immediate early genes are a key part of neural plasticity, because they
enable neurons to adapt to stimuli by regulating gene expression,
which is crucial for protein synthesis that is needed for synaptic
modifications and learning35,36. Taking classic psychedelics as an
example, drug administration induces robust increases in the expres-
sion of immediate early genes37,38, including c-Fos, that can bedetected
starting in as few as 30minutes in multiple brain regions39,40. More
recently, technological advances in tissue clearing, light sheet fluor-
escence microscopy, and automated detection of nuclei have enabled
high-throughput mapping of the expression of immediate early genes
such as c-Fos in thewholemousebrain41,42. We and others have applied
thismethod to characterize the impact of psilocybin and ketamine43–45,
joining a rapidly growing number of studies using brain-wide imaging
of fluorescence signals to study drugs46–57. Although these early studies
have provided valuable biological insights, only one or two drugs were
typically included in each study thus far. Developing the method as a
drug screen requires evaluating its feasibility and accuracy on a larger
panel of compounds.

In this study, we measured brain-wide c-Fos expression in male
and female mice for 8 drug conditions, including a variety of psyche-
delics, related psychoactive compounds, and vehicle control. We
developed a pipeline for analysis and classification based on explain-
able machine learning, determining performance in one-versus-rest
and one-versus-one classification tasks. We implemented Shapley
additive explanation to interpret the machine learning models to
identify the brain regions driving the classifications. Collectively the
results demonstrate brain-wide imaging of immediate early gene
expression as a promising approach for preclinical drug discovery.

Results
Psychedelics and related drugs in the study
For this study, we evaluated 8 drug conditions: psilocybin (PSI,
1mg/kg, i.p., single dose), ketamine (KET, 10mg/kg, i.p., single dose),

5‐methoxy‐N,N‐dimethyltryptamine (5-MeO-DMT or 5-MEO, 20mg/kg,
i.p., single dose), 6-fluoro-N,N-diethyltryptamine (6-fluoro-DET or 6-F-
DET, 20mg/kg, i.p., single dose), 3,4-methylenedioxy methampheta-
mine (MDMA, 7.8mg/kg, i.p., single dose), acute fluoxetine (A-SSRI,
10mg/kg, i.p., single dose), chronic fluoxetine (C-SSRI, 10mg/kg, i.p.,
one dose every day for 14 days), and saline vehicle (SAL, 10mL/kg, i.p.,
single dose) (Fig. 1a).

We elected to investigate these compounds for several reasons.
Psilocybin is a classic psychedelic that acts on the 5-HT2A receptor.
Psilocybin stands at the forefront of ongoing late-stage clinical trials
evaluating psychedelics’ efficacy for treating depression3–7. Ketamine
is primarily an NMDA receptor antagonist58. Despite the distinct
molecular targets, ketamine and psilocybin have similarities in their
plasticity-promoting action and behavioral effects59,60, making keta-
mine an intriguing compound to contrast with psilocybin. The doses
and route of administration for psilocybin and ketamine were chosen
based on prior studies showing behavioral effects in mice29,61.

5-MeO-DMT is a classic serotonergic psychedelic in the same
tryptamine chemical class as psilocybin16. There is clinical interest in
evaluating 5-MeO-DMT as a treatment for depression62,63. At a dose of
20mg/kg in mice, 5-MeO-DMT induces head-twitch response and
evokes structural rewiring in the mouse medial frontal cortex33.
Compared topsilocybin, 5-MeO-DMT is shorter-acting andhasa higher
affinity for the 5-HT1A receptor than for the 5-HT2A receptor. Thus 5-
MeO-DMT serves as a useful case of another tryptamine psychedelic
with distinct pharmacokinetics and receptor target profile. 6-fluoro-
DET is also a tryptamine like psilocybin and 5-MeO-DMT. Although
bioavailable in the brain and a 5-HT2A receptor agonist64,65, 6-fluoro-
DET induces autonomic effects without causing perceptual changes in
humans66. Therefore, it has been used as an active, non-hallucinogenic
control in a clinical study67. Concordantly, 6-fluoro-DET provided
ineffective as a substitute compound for rats trained to discriminate
LSD or 2,5-dimethoxy-4-iodoamphetamine (known as DOI)64,68. To
corroborate these prior results, we measured the effect of 6-fluoro-
DET on head-twitch response in mice using magnetic ear tags for
automated detection of head movements. Our results showed that,
unlike 1mg/kg psilocybin and 20mg/kg 5-MeO-DMT which elicited
robust head-twitch responses33, mice administered with 20mg/kg 6-
fluoro-DET were not statistically different from controls (Fig. 1b, c).
Our study adds to other recent studies20,21 that included 6-fluoro-DET
as a non-hallucinogenic tryptamine for comparison. The dose of 6-
fluoro-DET was chosen to match the dose of 5-MeO-DMT.

MDMA is different from psilocybin: it is a member of the phe-
nethylamine chemical class and has distinct pro-social and euphoric
qualities69. MDMA can act on monoamine transporters to enhance
release and inhibit reuptake of neuromodulators including serotonin,
thus it has been characterized as an entactogen rather than a classic
serotonergic psychedelic70. MDMA holds clinical relevance, particu-
larly for PTSD14,15. We selected a dose of 7.8mg/kg forMDMA based on
prior work showing that this dose facilitates fear extinction learning in
mice71. Fluoxetine is a commonly prescribed antidepressant that is a
selective serotonin reuptake inhibitor (SSRI). The clinical interest lies
in understanding the relative efficacies of SSRIs versus psilocybin4 and
whether ketamine or psilocybin is suitable for treatment-resistant
depression5,12,13. SSRIs require chronic administration to exert ther-
apeutic effects, therefore likely engage a mechanism of action distinct
than that of psilocybin and ketamine. For these reasons, we included
acute and chronic fluoxetine in this study. We chose a dose of 10mg/
kg, which was used for acute and chronic administration of fluoxetine
in mice previously72,73. Control animals received a single injection of
saline vehicle.

Light sheet fluorescence imaging of cellular c-Fos expression
For each of the 8 drugs, we tested 4male and 4 female C57BL/6 J mice,
totaling 64 animals for the entire data set. Brains were collected
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2 hours after the administration of the single dose or 2 hours after the
administration of the last dose for the chronic fluoxetine condition
(Fig. 1d). The 2-hour interval was chosen assuming drug penetrance to
the brain by 0.5 hours and peak c-Fos expression after an additional 1.5
hours74. Brains were processed for tissue clearing and c-Fos immuno-
histochemistry (see Methods). Light sheet fluorescence microscopy
wasused to image eachbrain at a resolution of 1.8 µmper pixel in the x-
and y axis and at 4 µm intervals in the z-axis, which allowed for sam-
pling of all cells in the entire brain without any gap. The images were
analyzed using neural nets for automated detection of fluorescent
puncta corresponding to c-Fos+ cells (see Methods). The number of c-
Fos+ cells detected in each brain for each condition is presented in
Fig. 1e. An example image collected from a mouse administered with
psilocybin is shown in Fig. 1f.

To investigate the regional distributionof c-Fos+ cells, we aligned
the images of each brain to the Allen Brain Atlas and segmented the

images into summary structures based on the Allen Mouse Brain
Common Coordinate Framework75 (see Methods; Supplementary
Data 1). The number of c-Fos+ cells in each brain region for all animals
is provided as source data. To visualize the entire data set, we nor-
malized the c-Fos+ cell count in each brain region by the total number
of c-Fos+ cells of each brain and by the spatial volume of the brain
region. Figure 2 is a heatmap of the resulting c-Fos+ cell density for all
the samples. We observed that c-Fos+ cell density was generally high
in the isocortex, olfactory area, hippocampal area, striatum and pal-
lidum, and thalamus, whereas expression was lower in the midbrain
and hindbrain, and cerebellum. There were individual differences
across samples from the same drug, but also notable contrasts across
different drugs. This begets questions such as: How does the indivi-
dual variability compare with the differences across drugs? How well
can whole-brain c-Fos maps be used to discriminate the differ-
ent drugs?
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Fig. 1 | Imaging brain-wide c-Fos expression at cellular resolution following
drug administration. a Chemical structures for the 8 conditions included in this
study: psilocybin (PSI), ketamine (KET), 5-MeO-DMT (5-MEO), 6-fluoro-DMT (6-F-
DET), MDMA, acute fluoxetine (A-SSRI), chronic fluoxetine (C-SSRI, daily for
14 days), and saline vehicle (SAL). b Time course of head-twitch response following
the administration of 5-MeO-DMT, psilocybin, 6-fluoro-DET, or saline vehicle. Line,
mean. Shading, 95% confidence interval based on 1000 bootstraps. 3 males and 3
females for each drug (n = 6), except 4 males and 3 females for saline (n = 7). c Box
plot of the total number of head twitchesdetectedwithin a 2-hour periodafter drug
administration. n = 6 for each drug, n = 7 for saline vehicle. The data centre repre-
sents median values, bounds of the box represent the 25th and 75th percentile.
Whiskers extend to 0th and 100th percentiles, excluding outliers (points beyond

median ±1.5 * interquartile range). Wilcoxon rank-sum test is two-sided. *P <0.05,
**P <0.01. (SAL vs. 5-MEO: P = 3 × 10−3, 6-F-DET vs. 5-MEO: P = 2 × 10−2, SAL vs. PSI:
P = 3 × 10−3, 6-F-DET vs PSI: P = 8 × 10−3). d Experimental timeline. e Box plot of the
total number of c-Fos+ cells in the brain for each drug condition. Data center
representsmedian values, bounds of box represent 25th and 75th percentile. Cross,
female individual. Circle, male individual. N = 64 mice, including 4 males and 4
females for each condition. f An example of the fluorescence images of c-Fos+ cells
in the mouse brain for a psilocybin-treated mouse acquired by light sheet fluor-
escence microscopy. Inset, magnified view of the dorsal anterior cingulate cortex.
Image is comparable to images seen in other 7 samples collected frommice treated
with psilocybin.b, c thepsilocybin and saline vehicle data hadbeenshown in aprior
study33.
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Machine learning pipeline for classifying drugs based on brain-
wide c-Fos distribution
To answer these questions, we developed a pipeline for quantitative
comparison of the brain-wide c-Fos expression data between different
drug conditions. We posited that different compounds may elicit

distinct regional distributions of cellular c-Fos expression that can
serve as fingerprints for classifying drugs. The pipeline starts with a
matrix of c-Fos+ cell counts for different brain regions from different
samples (first panel, Fig. 3a). This matrix of c-Fos+ cell counts under-
goes preprocessing, starting with normalization (dividing the c-Fos+
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cell count in each region by the total c-Fos+ cell count of the brain)
(second panel, Fig. 3a). Normalization is important because theremay
be batch effects across samples. The data were then processed to scale
the input data to a standard range such that the values across brain
regions are more comparable and amenable to fitting machine learn-
ing models (second panel, Fig. 3a), using Yeo-Johnson transformation
(monotonic transformation of data using a power function) and robust
scaling (median subtraction and interquartile range scaling). We will
herein refer to the values after this preprocessing step as the c-Fos
scores.

Next, we adapted the Boruta feature selection procedure19 to
determine which brain regions to include for model fitting and testing
(third panel, Fig. 3a). The Boruta procedure is a permutation-based
method for determining feature importance. It starts by creating
“shadow features”: for example, if the data contains 48 c-Fos scores for
brain region 1 for various conditions, then the corresponding shadow
feature will be those same 48 c-Fos scores with scrambled drug labels.
Shadow variants were created for all brain regions to create the
expanded Boruta dataset. A random forest classifier was built using
this Boruta dataset to determine a feature-importance value for each
brain region. If a brain region has a higher feature-importance value
than the largest feature-importance value from shadow features, then
brain region 1 is a “hit”. This permutation process is iterated 100 times.
Given that eachbrain region can achieve only oneof twooutcomes (hit
or no hit) in each iteration, the distribution of outcomes across all
iterations is a binomial distribution, and a brain region is included by

the statistical criterionof exceeding the95thpercentile of thebinomial
distribution. Why Boruta? We used the Boruta procedure in lieu of
including all brain regions, because many regions likely contribute
little or nothing towards differential drug action and their inclusion in
the model would increase noise and lead to overfitting. A distinctive
advantage of Boruta is that brain regions do not compete with each
other, but rather with the shadows. As a result, the number of brain
regions selected by Boruta is not pre-determined but instead dictated
by the data as needed.

For the last step, the c-Fos scores from the selected brain regions
are used to construct a ridge logistic regression model (fourth panel,
Fig. 3a). The entire pipeline is evaluated using fourfold splits, where
75% of the data in each drug condition was used to train and fit the
model, while the remaining 25% of the data is used to test the model.
Importantly, we emphasize that we used only the training data to
optimize the preprocessing parameters, run feature selection, and
construct a regression model. The same optimized preprocessing
parameters and selected features were then later applied to the test
data, ensuring no data leakage. The splits were repeated 100 times to
evaluate the prediction accuracy of the pipeline.

One-versus-rest classification shows drug prediction accuracy
well above chance
We performed a linear discriminant analysis on the c-Fos scores of all
64 samples, just after the preprocessing step. We plotted the data for
the top two linear discriminants (Fig. 3b). This visualization clearly
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Fig. 3 | A machine learning pipeline for drug prediction and performance of
one-versus-rest classification. aThepipeline consisted of three steps. First, c-Fos+
cell counts for each brain region undergo normalization, Yeo-Johnson transfor-
mation, and robust scaling, into c-Fos scores. Second, the Boruta procedure is used
to select the set of informative brain regions. Third, c-Fos scores from this set of
brain regions were used to fit a ridge logistic regression model. For each iteration,
75% of the data in each drug condition were used for region selection and training
through the three steps, and the remaining 25% of the data were withheld initially,

but then processed and tested with the ridge logistic regression model. The entire
process was iterated using different splits of the data 100 times. b Linear dis-
criminant analysis of the c-Fos scores to visualize the data in a low-dimensional
space. c The confusion matrix shows the mean proportion of predicted labels for
each of the true labels across all splits. d The composite precision-recall curves for
each drug condition across all splits and the grand average across all drugs. The
values in parentheses are the area under the precision-recall curve for each
condition.
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shows that the differences in c-Fos scores across drugs are more
separable than the differences in c-Fos scores across samples within
the same drug condition. Drugs that alter the serotonergic tone via
different mechanisms of action are positioned differently along the
first linear discriminant. By contrast, 5-MeO-DMT, 6-fluoro-DET, and
psilocybin are separable along the second linear discriminant.

We first tested the pipeline with the entire data set and asked the
models to predict the exact drug condition. The confusion matrix
shows how the predicted drug labels compared with the true drug
labels (Fig. 3c). Because there were 8 conditions, the chance-level
accuracy was 12.5% (1 out of 8). We found that themodel was themost
accurate at identifying theMDMA, chronicfluoxetine, and 5-MeO-DMT
samples, with 100%, 89%, and 81% accuracy respectively. Performance
for other conditions was lower, yielding an overall mean accuracy of
67% for all drugs. Performance was the lowest for saline and acute
fluoxetine at 38% and 47%, respectively. Our interpretation of the low-
performance conditions is that tradeoffs must be made to solve this
8-way classification problem. The machine learning model uses the
cross-entropy loss function, which seeks to maximize the probability
of labelling training data correctly across the entire training set rather
than drawing boundaries in a one-vs-rest fashion. In this global
approach, individual decision boundaries may be placed in a way that
performs on one label, such as saline, while leading to a greater
improvement in others. In other words, the model was fitted with the
goal ofmaximizing the overall mean classification accuracy, which was
not necessarily the most ideal for distinguishing any one specific
condition such as saline. Nevertheless, the mean accuracy of 67% was
still substantially higher than the chance level of 12.5%.

Confusion matrices are calculated based on a single decision
threshold, which may exaggerate the true positive rate for one drug
type at the expense of more false positives for another drug type. To
understand our model performance from a different perspective, we
plotted precision-recall curves (Fig. 3d). These curves consider per-
formance across all possible decision thresholds and summarize the
results in terms of precision (true positives relative to false positives)
and recall (true positives relative to false negative). The perfect clas-
sifier would have an area under the precision-recall curve (precision-
recall AUC) of 1. Across all drugs, thepipeline yielded ameanprecision-
recall AUC value of 0.75. This is well above the theoretical chance level
of 0.125 for 1 out of 8 drugs and the empirical chance level of 0.12
calculated with shuffled data. The performance based on precision-
recall AUC for predicting different drugs corresponds in rank order to
the accuracy in the confusion matrix. Overall, these results provide
evidence that brain-wide c-Fos maps can be leveraged to identify the
exact drug administered out of a panel of related psychoactive
compounds.

A likely use case for the pipeline is to determine how a novel
chemical entitymay be positioned in the pharmacological space based
on the c-Fos expression pattern. To simulate this scenario, we per-
formed a leave-one-drug-out analysis, in which we trained a model
using seven conditions (psilocybin, ketamine, 5-MeO-DMT, MDMA,
acute fluoxetine, chronic fluoxetine, and saline), but then tested it on
all conditions including 6-fluoro-DET. We found that 6-fluoro-DET was
most frequently classified as psilocybin at 44% chance but could also
be detected as saline at 29% chance (Fig. S1), which is in general
agreement with 6-fluoro-DET being a non-hallucinogenic 5-HT2A

receptor agonist.

One-versus-one classification suggests a small list of brain
regions drives drug prediction
We reasoned that one-versus-one classification, where the machine
learning pipeline solves a binary problem of deciding between two
drugs (Fig. 4a), may provide deeper insights into the factors that dis-
tinguish specific drug classes. Given the prominence of psilocybin in
clinical trials and drug discovery, we were particularly interested in

comparisons between psilocybin and other conditions that differ in
serotonergic receptor affinities (5-MeO-DMT), mechanism of action
(MDMA, acute fluoxetine, ketamine), or hallucinogenic potency (6-
fluoro-DET). We trained the same machine-learning pipeline using
subsets of data involving only twoor three drugs. The binary classifiers
achieved near-perfect accuracy reflected by precision-recall AUC
values at or exceeding 0.90, with the notable exception of psilocybin
versus 6-fluoro-DET which had a precision-recall AUC of 0.59 (Fig. 4b).
The difficulty in discerning between a classic serotonergic psychedelic
and the non-hallucinogenic 5-HT2A receptor agonist extended beyond
psilocybin: 5-MeO-DMTversus 6-fluoro-DET aswell as psilocybin and 5-
MeO-DMT versus 6-fluoro-DET also yielded modest precision-recall
AUC values at0.80 and0.57 respectively, relative to chance level of 0.5
for one-versus-one classifications. These results suggest that brain-
wide cellular c-Fos expression is effective at discriminating between
exemplars from different drug classes, such as a classic psychedelic
versus an entactogen, a classic psychedelic versus a dissociative, and a
classic psychedelic versus SSRI. It also effectively distinguishes
between the two classic psychedelics psilocybin and 5-MeO-DMT.
However, the prediction is less reliable for the specific problem of
predicting a non-hallucinogenic 5-HT2A receptor agonist relative to a
classic psychedelic.

As mentioned, a feature of the Boruta procedure is that a different
number of regions may be included depending on the data and the
desired classification. Indeed, therewere differences in the brain regions
chosen for the various drug prediction problems and different training
and testing splits of the samedata (Fig. 4c).Most classifiers relied on <35
brain regions for drug prediction, except for the two comparisons
involvingMDMAwhich included ~40–70brain regions. Furthermore,we
plottedhowoften various cortical and thalamic regionswere selectedby
the machine learning models (Fig. 4d). Regions such as retrosplenial
areas (RSPd, RSPv), somatosensory areas (SSp-m, SSp-tr, SSp-II), and
lateral networks (VISC, AId) were included often, but different classifiers
relied on them to different extents. We will explore the importance of
specific brain regions quantitatively in the next section using Shapley
additive explanation. Many thalamic regions were consistently included
in comparisons involving MDMA, which contributed to the higher total
number of brain regions used by classifiers when MDMA was involved.
Overall, the results suggest that one-versus-one drug classifications
based on brain-wide c-Fos expression are highly accurate, with the
machine learning models only needing data from a small number of
brain regions to produce the prediction.

Using Shapley additive explanation to highlight key brain
regions driving drug prediction
A brain region selected by Boruta in the pipeline suggests that it is
informative, yet it does not communicate the importance of its con-
tribution to the final prediction. To better understand how the c-Fos
scores in individual brain regions contribute to decisions in one-
versus-one drug classifications we used Shapley additive explanation
(SHAP) (Fig. 5a). SHAP uses a game-theoretical approach to determine
how the brain regions contribute to driving the machine learning
regression model from a starting base value to the final output value
for decision21. To illustrate, we present the force plot of two test brain
samples in one of our cross-validation splits (Fig. 5b). The top half of
the plot shows the c-Fos scores in selectedbrain regions for the sample
of psilocybin and their additive contributions to the decision. In this
instance, regions such as posteromedial visual area (VISpm, c-Fos
score = 0.44) and lateral habenula (LH, c-Fos score = −0.78) were
among the drivers leading to an overall positive SHAP value to predict
psilocybin. The posteromedial visual area is located between the pri-
mary visual cortex and retrosplenial cortex76 and has been suggested
to mediate visual information between the neighboring regions77.
Lateral habenula neurons had spiking activity associated with unde-
sirable outcomes78,79, which is consistent with their posited role in
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mediating depression-related symptoms80 and contributing to anti-
depressant response81. Intriguingly, another driver was the parafasci-
cular nucleus (PF, c-Fos score = −1.74), which is implicated in arousal
and headmovements82. By contrast, the c-Fos scores in the same set of
selectedbrain regions sums to anoverall negative SHAPvalue for the 5-
MeO-DMT sample, providing thebasis for the correct prediction in this
case. Across all splits tested for the psilocybin-versus-5-MeO-DMT
comparison, we identified regions that were included in >75% of the
machine learning models, and then ranked these regions by mean
SHAP value difference, which highlight the brain regions most
responsible for driving the classification (Fig. 5c, d).

We also analyzed other one-versus-one classification problems
using Shapley additive explanation. For MDMA versus psilocybin,
there was a longer list including 32 brains regions that were used in at
least 75% of the cross-validation splits (Fig. 6a, b). Half of these regions
(16/32) were in the thalamus. Given the larger number of regions in
eachmodel, the SHAP value differences tended to be smaller, because
there is redundancy in the information provided by the regions.

For ketamine versus psilocybin, the top 5 regions that were con-
sistently included in >96% of the cross-validation splits and had the
highest SHAP value differenceswere the visceral area (VISC), gustatory
area (GU), dorsal agranular insular area (AId), xiphoid thalamic nucleus
(Xi), and nucleus of reuniens (RE) (Fig. 6c, d). VISC and GU have direct

connections to AId, all of which are part of the lateral subnetworks of
the mouse neocortex83,84. The mouse insular cortex contains various
cell types that express an abundance of 5-HT2A and 5-HT1A receptors

85,
which may predispose it to stronger activation by psilocybin. Indeed,
the higher c-Fos scores in these lateral cortical regions informed the
model to predict psilocybin. Of note, the insular cortex is considered a
core region in the mouse homolog of the salience network86,87, which
has been implicated in mood regulation and depression in humans88.
Xi and RE arepart of themidline thalamus,which receives visual inputs
to mediate behavioral responses to threat89. Interestingly, higher
c-FOS scores in these midline thalamic regions were routinely used by
machine learning models to predict ketamine.

Finally, we also plotted SHAP value differences comparing acute
fluoxetine and psilocybin (Fig. 6e, f). Here, the strongest differences
were detected by in regions involved in somatosensation and motor
control, including cortical somatosensory regions (SSs, SSp-m), pri-
mary motor cortex (MOp), substantia nigra (SNr), and caudoputamen
(CP). These effects may relate to the previously noted effects of psy-
chedelic on the integration of tactile sensory inputs90. Other impli-
cated regions are the interpeduncular nucleus (IPN) and medial
mammillary nucleus (MM), which are deep midbrain regions that are
components of the limbic midbrain circuitry with long-range connec-
tions to the habenula, amygdala, and hippocampus.
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Fig. 4 | Performance of one-versus-one classification. a Schematic illustrating the
one-versus-one classification problem. b The mean area under the precision-recall
curve across all 100 splits for different binary classifiers. Dark gray, real data. Light
gray, shuffled data. c Violin plot representing the number of brain regions selected
via the Boruta procedure for inclusion in the regression model (n = 100 splits for
each classifier). The data centre represents median values, bounds of the inset
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d Heatmaps showing the fraction of splits when a cortical (left) or thalamic (right)
regionwas included in the regressionmodel. The regions are sortedbasedonusage
in all classifiers. Regions that were included in <75% of the splits across all condi-
tions are not shown.
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Discussion
In this study, we evaluated the possibility of using whole-brain imaging
of cellular c-Fos expression for drug classification. We developed a
machine learning pipeline with key features including adapting the
statistical Boruta procedure to select informative brain regions and
using Shapley additive explanation to identify features that drive the
classifications. We tested the approach using 64 mice that were
administered with a panel of psychedelics and related psychoactive
drugs. The results demonstrated high accuracy in various one-versus-
rest and one-versus-one classification problems, supporting the utility
of the approach for preclinical drug discovery. For dissemination, the
data and code are available at a public repository.

Immunohistochemistry can be influenced by factors such as
fixation method, incubation time, antibody quality, and antigen
retrieval techniques. Consequently, the c-Fos antibody staining can
differ from sample to sample. Here, the issue of inter-sample variability
wasmitigated by not using the absolute c-Fos+ cell counts for analysis,
but instead using the proportional distribution in each brain region by
dividing c-Fos+ cell counts in each region by the total count in each
brain. For instance, if the entire brain was stained poorly and the total
c-Fos+ cell count is low, the proportion distribution should remain
unchanged. This normalization step is possible when whole-brain data
is acquired via light sheet fluorescence microscopy. Experimentally,
the variation in antibody staining is also reduced because active elec-
trotransport methods were used for immunolabeling. Although the

normalization step is expected to helpwith inter-sample variability, we
note that the 64 samples were processed for imaging over 3 batches
(details are provided in “Methods”), and some differences may arise
from batch effects.

On average, only a small number of brain regions (~25 brain
regions, except for the two comparisons involving MDMA which
included ~50 brain regions) out of the >300 summary structures in the
brain were included in the machine learning models. From our prior
study comparing psilocybin and ketamine43, we know that both com-
pounds induce increases in c-Fos+ expression in numerous brain
regions including dorsal and ventral anterior cingulate cortex (ACAd,
ACAv), prelimbic area (PL), primary visual cortex (VISp), retrosplenial
cortex (RSP), mediodorsal thalamus (MD), locus coeruleus (LC), lateral
habenula (LH), claustrum (CLA), basolateral amygdala (BLA), and
central amygdala (CEA). These brain regions are likely important for
drug action, but shared targets of ketamine and psilocybin are not
helpful for distinguishing the compounds. By design, the machine
learning pipeline emphasizes brain regions with c-Fos expression
changes that can discriminate between drug conditions, for which we
found a short list of brain regions.

We anticipate the pipeline to be useful for classifying new che-
mical entities. For instance, when a novel psychedelic-inspired
compound is synthesized, we may predict its action in the brain by
its position in the linear discriminant axes (Fig. 3b) and the proximity
to existing drug labels (Fig. 3c). We simulated how such a scenario
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Fig. 5 | Shapley additive explanation for identifying brain regions driving the
prediction of 5-MeO-DMT from psilocybin. a Diagram illustrating the concept
behind SHAP values. The ridge regression model is akin to a black box that takes
c-Fos scores as inputs to produce a prediction. SHAP values can be computed to
quantitatively assess how strong and in what direction the c-Fos score of each brain
region contributes to the prediction. b Example force plots for a psilocybin sample
and a 5-MeO-DMT sample from one split, illustrating how actual c-Fos scores of
brain regions add to shift themodel’s output from the base value to the final value.

c Plot relating a region’s c-Fos scores to the SHAP values across individual splits of
the 100 iterations for the 5-MeO-DMT-versus-psilocybin classification. Brain
regions were shown only if they were used by ≥75% of the splits and listed in rank
order by the absolute value of themean difference in SHAP values between the two
drug conditions. The values in parentheses are the absolute value of the mean
difference in SHAP values between the two drug conditions. d Visualization of the
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could work by fitting the pipeline with 7 compounds and testing 6-
fluoro-DET as if the classifier has never seen it previously (Fig. S1). For
the full panel of drugs tested, we show that the exact drug could be
identified with mean accuracy of 67%, significantly above the chance
level of 12.5%. It is instructive to ask how the pipeline’s performance
compared with other approaches to classify drugs. For humans,
psilocybin, ketamine, and MDMA exert comparable acute behavioral
effects in metrics such as experience of unity, oceanic boundless-
ness, and changed the meaning of percepts69. However, MDMA
preferentially induce blissful state, whereas ketamine evokes dis-
embodiment and psilocybin induces elementary imagery and audio-
visual synesthesia69,91. In one study, humanparticipants were asked to
guess the administered drug, choosing between mescaline (500mg
and 300mg), LSD, and psilocybin92. The accuracy for identifying the
correct drug ranged from 48% to 58% during the session and 69% to
81% after the study. For animals, there has been recent progress in
capturing videos of freely moving mice and analyzing their motion
using unsupervised machine learning methods. One study used
motion sequencing method to investigate a larger panel of 30 psy-
choactive compounds and doses from a wide range of drug classes
including benzodiazepines, antidepressants, antipsychotics, and sti-
mulants (but not psychedelics and the compounds tested in the
current study) to show a F1 precision-recall score of 0.6223. Our
pipeline is based on brain-wide cellular c-Fos expression and
machine learning, therefore, performed at a level comparable to
earlier methods based on human and animal behaviors.

As with any analysis pipeline, there are methodological choices
that can affect the outcome, which can plague the interpretation as
demonstrated in the field of neuroimaging93. Our codebase is available
online for anyone to freely use, adapt, and test. We used a statistical
method with the Boruta algorithm, rather than a strict threshold, for
region selection. We were careful about data leakage, using only the
training data for parameter optimization and feature selection, such
that the prediction accuracy for test data would not be inflated. We
implemented Shapley additive explanation to decipher the factors
driving the decisions, which is a general approach that should find
great utility in neuroscience94, and has already seen applications in
behavioral classification95 and spike waveform analyses96. There are
areas of improvement for the pipeline. While we opted for the sim-
plicity of treating each brain region on its own, regions may have
correlated responses to drug administration. There may be biological
reasons, such as anatomical proximity or synaptic connectivity, for
clustering brain regions prior to region selection, which may outper-
form our procedure. Network analyses may be used to explore
potentially correlated responses to drugs. Furthermore, the pipeline
will benefit from testing a larger range of compounds including
enantiomers, other drug classes, and different doses. The drugs may
be administered in conjunction with a receptor antagonist and a stress
or behavioral manipulation, which will all lead to a richer and more
refined picture of the ‘drug space’. Finally, c-Fos is one immediate early
gene. It is well characterized as an activity-dependent gene and has the
advantage of nuclear labeling that permits automated detection.
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However, there are other immediate early genes and plasticity-related
biomarkers that can provide complementary information.

Here we only demonstrated moderate throughput by performing
the whole-brain imaging approach for a sample size of 64 brains. This
falls short of other current screening methods, which typically involve
hundreds of conditions including more compounds, different doses,
and additions of antagonists for competitive assays. For whole-brain
imaging, themain issue was cost, which precluded us from testing at a
larger scale. At the moment, the drug injection and tissue extraction
steps are straightforward. The cell counting procedure is mostly
automated. However, the cost per brain is high due to tissue proces-
sing and imaging, which may drop in the future because of the rapid
advances in brain-clearing methods97 and the development of inex-
pensive light sheet fluorescence microscopes98,99. Thus, there is hope
thatwhole-brain imaging can become apracticalmethod for screening
drugs within the next several years.

In summary, there is intense interest in using psychedelics for the
treatment of neuropsychiatric disorders. Progress hinges on knowing
more about existing psychedelics and finding new psychedelic-
inspired drugs with improved characteristics. However, there is cur-
rently a paucity of reliablemethods to screen psychedelics and related
analogs. Here we developed and characterized an approach based on
whole-brain imaging of cellular c-Fos expression. We demonstrated
high prediction accuracy for drug classifications using a machine-
learning pipeline. We expect this and other neuroscience-based
approaches to play an important role in accelerating the preclinical
development of psychiatric drugs.

Methods
Animals
We used adult, 8-week-old male and female C57BL/6 J mice (#00064,
The Jackson Laboratory). Animals were housed in groups with 2—5mice
per cage in a temperature-controlled room, operating on a normal 12 hr
light–12 hr dark cycle (8:00 AM to 8:00 PM for light). Food and water
were available ad libitum. Tissues were collected and imaged in three
batches. The first batch performed in August 2021 included 2males and
2 females for psilocybin (1mg/kg, i.p.), 2 males and 2 females for keta-
mine (10mg/kg, i.p.), and 2 males and 2 females for saline (10mL/kg,
i.p.). Data from these mice were included in a previous study43. The
secondbatchperformed inMay 2022 included 2males and 2 females for
psilocybin (1mg/kg, i.p.), 2males and2 females for saline (10mL/kg, i.p.),
4 males and 4 females for 5-MeO-DMT (20mg/kg, i.p.), 4 males and 4
females for6-fluoro-DET (20mg/kg, i.p.), 4males and4 females for acute
fluoxetine (10mg/kg, i.p.), 4 males and 4 females for chronic fluoxetine
(10mg/kg, i.p.; daily for 14 days). The third batch performed in
December 2022 included 4 males and 4 females for MDMA (7.8mg/kg,
i.p.) and 2 males and 2 females for ketamine (10mg/kg, i.p.). All animals
were housed and handled according to protocols approved by the
Institutional Animal Care andUse Committee (IACUC) at Yale University
and Cornell University. Tissue collection for all batches was done at Yale
University, except for ketamine in the third batch, which was done at
Cornell University. For all batches, the brain samples were shipped for
clearing and imaging at LifeCanvas Technologies (Cambridge, MA).

Drugs
Psilocybin, 5-MeO-DMT succinate, and 6-fluoro-DET solids were
obtained fromUsona Institute’s Investigational Drug&Material Supply
Program. We used the succinate salt form of 5-MeO-DMT100 (at
equivalent amount to freebase 5-MeO-DMT) because it can be dis-
solved in saline. Ketamine hydrochloride injection vial (055853, Henry
Schein; or Dechra), fluoxetine hydrochloride solid (F132, Millipore-
Sigma), 3,4-MDMA hydrochloride (13971, Cayman Chemical), and sal-
ine (NDC: 0409-4888-03, Hospira) were purchased from supply ven-
dors. Psilocybin, 5-MeO-DMT succinate, 6-fluoro-DET, MDMA, and
fluoxetine were prepared by dissolving powders into saline. Ketamine

was prepared by diluting from the injection vial. For ketamine, 5-MeO-
DMT succinate, 6-fluoro-DET, MDMA, and acute fluoxetine, the work-
ing solutions were prepared fresh on the day of the experiment. For
psilocybin, a stock solution was made, and then the working solution
wasmade from the stock solution, with both solutions preparedwithin
1 month from the day of the experiment. For chronic fluoxetine, the
working solution was prepared on the first day of administration and
then kept in 4 °C and used for the remainder of the chronic treatment.

Tissue collection and imaging
All the samples underwent the same tissue collection and imaging
protocols. Twohours following the single-dose injectionor injectionof
the last dose for chronic fluoxetine, mice were deeply anesthetized
with isoflurane and transcardially perfused with phosphate-buffered
saline (P4417, Sigma-Aldrich) followed by paraformaldehyde (PFA, 4%
in PBS). Brains were fixed in 4% PFA for 24 hours at 4 °C, after which
they were transferred to 0.1% sodium azide in PBS for storage until
clearing. The SHIELD protocol was used to process the whole mouse
brains. A stochastic electrotransport device101 was used to clear sam-
ples for 4 days at 42 °C, followed by active immunolabeling using
eFLASH technology integrating electrotransport101 and SWITCH102.
Each brain sample was stained with 3.5μg of rabbit anti-c-Fos mono-
clonal antibody (Abcam, #ab214672), followed by 10μg ofmouse anti-
NeuN monoclonal antibody (Encor Biotechnology, #MCA-1B7) and
then by fluorescently conjugated secondaries in 1:2 primary:secondary
molar ratios (Jackson ImmunoResearch). Following active labeling,
refractive index matching (n = 1.52) was done through incubation in
EasyIndex (LifeCanvas Technologies). Samples were then imaged at
×3.6 magnification with a SmartSPIM light sheet fluorescence micro-
scope (LifeCanvas Technologies) at a resolution of 1.8 µm/pixel for XY
sampling with 4 µm step size for Z sampling over the entire brain.
Imaging was done blinded to treatment conditions.

Atlas registration and cell counting
Fluorescence images were tile-corrected, de-striped, and registered to
the Allen Brain Atlas using an automated process. For each brain, the
image from the NeuN channel was registered to 8–20 atlas-aligned
reference samples using SimpleElastix103, which implemented succes-
sive rigid, affine, and b-spline warping algorithms. The final atlas
alignment value for each samplewasdetermined by taking the average
alignment generated across intermediate reference samples. Cell
detection was automated by using a custom convolutional neural
network design using the TensorFlow Python package. First, a U-Net-
based detection network was used to locate fluorescent puncta cor-
responding to c-Fos-immunolabeled cells. Second, a ResNet-based
network was used to filter putative cells to arrive at a final list of cell
locations. Each cell locationwas projected onto the Allen Brain Atlas to
identify its anatomical region. We segmented the brain into 316 sum-
mary structures based on the Allen Mouse Brain Common Coordinate
Framework75. We omitted the ‘fiber tracts’ summary structure in the
analysis to focus on grey matter structures. Counts were then gener-
ated on a per-region basis for each sample.

Batch effect correction
Weobserved differences in the total number of c-Fos+ cells in psilocybin
samples across batch 1 and 2, saline samples across batch 1 and 2, and
ketamine samples acrossbatch 1 and3.Batcheffects are commonand, in
this study, may arise from differences in antibody quality, microscope
condition, and/or subtle changes in the automated cell counting pro-
cedure. To correct for these differences, a scaling factor was calculated
for the psilocybin, ketamine, and saline conditions individually. This
factor was calculated by taking the mean total c-Fos+ cell counts of the
batch 2 (psilocybin, saline) or 3 (ketamine) mice belonging to the same
drug condition and dividing by mean total c-Fos+ cell counts of the
batch 1 (psilocybin, saline, ketamine) mice belonging to the same drug
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condition. The factor was 2.78 for psilocybin, 4.94 for ketamine, and 3.11
for saline. These factors were applied to the per-region c-Fos+ cell count
data in batch 1 to shift the c-Fos+ cell counts to be more comparable to
the later batches. All analyses were performed after the batch effect
correction. We emphasize that this batch correction step should not
affect the machine learning analysis pipeline described below. This is
because the first step of the pipeline is to divide per-region count by the
total count in each brain, meaning that the absolute values of the cell
count should have minimal influence on model fits but instead it is the
relative values of the cell count (e.g., the proportion of c-Fos+ cell
residing in one brain region over another brain region in a sample) that
mattered for analysis and prediction.

Head-twitch response
Head movements were recorded using a magnetic ear tag system as
described in detail previously33. Briefly, an ear tag consisted of a neo-
dymium magnet (N45, 3mm diameter, 0.5mm thick, #D1005-10,
SuperMagnetMan) that was adhered to an aluminium ear tag (La Pias
#56780, Stoelting) with cyanoacrylate glue (Super Glue Ultra Gel Con-
trol, $1739050, Loctite). The neodymium magnet was coated with a
nitrocellulose marker (#7056, ColorTone) and dried for >2h, which
helped to reduce ear irritation for the mice. This magnetic ear tag was
applied to the mouse’s ear using an ear tag applicator (#56791, Stoelt-
ing). For measurement, the animal was put inside a plastic cube
(4”×4”×4”). A spool of enameled cooper wire (30 AWG) was used to
wind around the cube like a solenoid, with the ends of the wire con-
nected to a current-to-voltage preamplifier (PP444, Pyle) where the
voltage was captured with a computer via a data acquisition device
(USB-6001, National Instruments). Each mouse was recorded using one
cube. Up to four cubes could be used to record from four mice at once
inside a soundproof chamber. Data acquisition and analysis were done
using custom software written in MATLAB (Mathworks). The voltage
signal was sent through a 70–110Hz bandpass filter because the head
twitch response had a characteristic ~90Hz frequency. The filtered sig-
nal was then processed for peak detection to identify individual head-
twitch events. A protocol including parts list for the setup and the
MATLAB code is available at https://github.com/Kwan-Lab/HTR.

Machine learning pipeline—preprocessing
The analysis pipeline used the Python package sci-kit learn (Version
1.2.1)104. The first step of the pipeline was preprocessing, which entails
three steps: normalization, transformation, and scaling. For normal-
ization,wedivided each region’s c-Fos+ cell count by the total c-Fos+ cell
count across all summary structures used. This was done to mitigate
influence of batch effects across samples. For transformation, each brain
region’s normalized c-Fos+ cell counts across different drug conditions
were transformed using Yeo-Johnson power transformation105. The Yeo-
Johnson transformation is a generalized form of the Box-Cox transfor-
mation. The transformation leads to data values that more closely
approximate a Gaussian distribution. The Yeo-Johnson transformation
was implemented in scikit-learn: PowerTransformer(method=’yeo-john-
son’, standardize=False). The Yeo-Johnson transformation is para-
meterized by one variable, lambda. The optimal lambda parameter was
calculated for each brain region independently using maximum like-
lihood estimation to optimize for normality. For scaling, for each brain
region, the RobustScaler module in scikit-learn was used to subtract the
median value and scales values by the range of the 25th to 75th per-
centile (quartile scaling). We decided to do this, rather than subtracting
mean value and standard-deviation scaling, because it is less sensitive to
outliers. The c-Fos+ cell counts of eachbrain region after undergoing the
normalization, transformation, and scaling steps are referred to as the
c-Fos scores. To visualize the data, we performed dimensionality
reduction on c-Fos scores across all samples using scikit-learn’s Linear-
DiscriminantAnalysis function and plotted the top two linear dis-
criminants (Fig. 3b).

Machine learning pipeline—region selection
Based on Allen Institute definition of summary structures, the brain
was divided into 315 regions (316 summary structure and then ‘fiber
tracts’ removed). We were concerned that a model involving c-Fos
scores from 315 regions may be overfitting due to our limited sample
size of 64 brains. Many regions are likely not informative and only
contribute noise to the machine learning models. Therefore, we
implemented a method to filter out features (i.e., the brain regions)
which were not informative for distinguishing the desired drug con-
ditions. Region selection was carried out using the Boruta algorithm,
as implemented in the BorutaPy package106. The Boruta algorithm is
an ‘all relevant features’ selection method which seeks to identify all
the features with information relevant to a task. This was done by
creating scrambled versions of each feature, which are called shadow
features, and appending them to the original data set. This expanded
data set was then used to fit a random forest classifier, as imple-
mented in scikit-learn. We used the BorutaPy package to auto-
matically select the number of trees for the RandomForestClassifier()
module based on the size of the feature set. Following this, a
threshold was established based on the highest feature importance
amongst shadow features. Features exceeding this threshold were
considered ‘hits’ and recorded. This procedure was repeated 100
times. The distribution across these 100 iterations created a binomial
distribution. The BorutaPy package rejected features based on the
cumulative distribution function of a binomial distribution where
p = 0.5, alpha = 0.05, and n = number of hits. Features (i.e., brain
regions) that were not rejected by this criterion were the features
included for the next stage of the pipeline.

Machine learning pipeline—classification
We used the c-Fos scores of the selected brain regions to fit a ridge
regression model (L2 normalized logistic regression). The regulariza-
tion parameter C is a hyperparameter used to modulate the penalty
strength. Given the interconnected nature of the exact feature set and
hyperparameter, as well as our desire to eventually merge results
across many cross-validation splits of the data, we opted to fix this
parameter to its default value of 1. The ‘multinomial’ setting was used
to generalize from binary classification to multi-class classification.

Cross-validation to determine prediction accuracy
The data were evaluated using the aforementioned pipeline using
fourfold splits, where 75% of the data (i.e., 6 brain samples) in each
drug conditionwas used to train and fit themodel, while the remaining
25% of the data (i.e., 2 brain samples) was used to test the model.
Importantly, preprocessing parameters (e.g., lambda in Yeo-Johnson
transformation) and feature selection (brain regions to be included)
were chosen using only the training data to ensure no data leakage.
Nevertheless, after those stages were fixed, the test data would
undergo the same preprocessing and feature selection steps before
being inputted into the ridge regression model to generate the pre-
diction of the drug condition. We performed 100 iterations, each time
using randomized split for each drug condition generated by sci-kit-
learn’s StratifiedShuffleSplit() function. Combining the outcome
across the 100 iterations, the predicted classifications were used to
generate a mean confusionmatrix (Fig. 3c). The probabilities assigned
to each label for each test data point were combined to create a
composite precision recall curve, generated using scikit-learn’s pre-
cision_recall_curve() function (Figs. 3d and 4b). The scikit-learn’s auc
function was used to calculate the area under the curve for each
composite precision recall curve (legend of Fig. 3d). We used numpy’s
random seeds and state objects (numpy.random.RandomState()) to
generate reproducible results. The cross-validation splitting function
was seeded with an integer, per scikit-learn’s recommendations. The
remaining random states were set using a random state object. A null
distribution for the area under the precision recall curve was
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established by shuffling labels during each cross-validation split prior
to model fitting and label prediction (Fig. 4b).

Shapley additive explanation
SHAP values were generated by the LinearExplainer object from the
SHAP package, which accepted test data points and the fit model. We
set the feature perturbation parameter of the LinearExplainer to ‘cor-
relation_dependent’. SHAP values were generated in part by breaking
dependencies across features and testing the influence of perturba-
tions on individual features. This ran the risk of creating unrealistic
feature combinations, because many brain regions, which would nor-
mally change in lockstepmay be changed individually by the algorithm
to infer feature importance, which would lead to inflated feature
importance scores107. By using the “correlation-dependent” interven-
tion, additional measures were taken to address correlations in the
feature space and credit was distributed more appropriately. The
SHAP values for each test data point were combined across the data
splits from the 100 iterations to arrive at composite SHAP summary
plots (Figs. 5c and 6a, c, e). We determined which brain regions were
included in ≥75% of the cross-validation splits of the data (Fig. 4c, d).
Regions meeting this criterion were visualized using the brainrender
package108 (Figs. 5d and 6b, d, f).

Leave-one-drug-out analysis
Thefittingof thepipeline (pipelineObj.fit)was performedona reduced
dataset of c-Fos scores, excluding all samples in the 6-fluoro-DET
condition. That is, for each split, training data were c-Fos+ cell count
from 75% of the samples from 7 conditions (psilocybin, ketamine, 5-
MeO-DMT, MDMA, acute fluoxetine, chronic fluoxetine, and saline).
The test data consists of c-Fos+ cell count from the remaining 25% of
the samples from those seven conditions and 25% of the samples
drawn from the left-out condition of 6-fluoro-DET. For linear dis-
criminant analysis, the full dataset was transformed (pipelineObj.-
transform) and plotted using multiple calls to the seaborn scatterplot
function (sns.scatterplot).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral and light sheet data generated in this study are pro-
vided in the Supplementary Information and Source Data file. Source
data are provided with this paper.

Code availability
Code associated with the study is available at https://github.com/
Kwan-Lab/aboharbdavoudian2025 and https://github.com/Kwan-
Lab/HTR.
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