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This study examined the role of the dorsal medial prefrontal cortex of mice in
anticipating reward-value switch points in a two-armed bandit task. They
demonstrate the dorsal medial prefrontal cortex is involved in task performance and
use model-based methods to uncover the algorithmic processes affected by
prefrontal cortex perturbations. If the claims were supported, this would be a
valuable finding. Unfortunately, the reviewers recognised significant issues with the
task design and analyses, making the evidence to support the role of the prefrontal
cortex in anticipation of switches inadequate.
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Abstract
Summary

There are often sudden changes in the state of environment. For a decision maker, accurate
prediction and detection of change points are crucial for optimizing performance. Still
unclear, however, is whether rodents are simply reactive to reinforcements, or if they can be
proactive to estimate future change points during value-based decision making. In this study,
we characterize head-fixed mice performing a two-armed bandit task with probabilistic
reward reversals. Choice behavior deviates from classic reinforcement learning, but instead
suggests a strategy involving belief updating, consistent with the anticipation of change
points to exploit the task structure. Excitotoxic lesion and optogenetic inactivation implicate
the anterior cingulate and premotor regions of medial frontal cortex. Specifically, over-
estimation of hazard rate arises from imbalance across frontal hemispheres during the time
window before the choice is made. Collectively, the results demonstrate that mice can
capitalize on their knowledge of task regularities, and this estimation of future changes in the
environment may be a main computational function of the rodent dorsal medial frontal
cortex.
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Introduction

In life, we experience twists and turns – discrete events that abruptly alter the state of
environment. In some cases, the change is a one-time occurrence that is impossible to predict. We
must then adjust by assessing the new situation following the change. However, in other cases, the
changes may occur repeatedly with certain tendencies. For example, a favorite chef in a
restaurant may have a recurring schedule where she cooks throughout the year, except in the
summer for 3 – 5 weeks when she would take a vacation and lets a substitute take over. As a
patron, it would be advantageous to learn this pattern, anticipate the impending switches, and
maximize the chance of receiving a delicious outcome. While it is evident that humans can
estimate change points and leverage the information in decision-making, whether animals such as
mice have this ability and the neural substrates supporting the computations remain unclear.

A classic paradigm to study decision-making in response to repeated changes is the two-armed
bandit task. Each trial, the animal has two options, and each option is associated probabilistically
with a reward. After a certain number of trials, the reward probabilities are switched among the
options. The two-armed bandit task is widely used because it can be tested in different species
including humans (Evers et al., 2005     ; O’Doherty et al., 2001     ; Tsuchida et al., 2010     ), monkeys
(Clarke et al., 2008     ; Costa et al., 2015     ; Donahue and Lee, 2015     ; Samejima et al., 2005     ), rats
(Groman et al., 2019     ; Hamid et al., 2016     ; Ito and Doya, 2009     ; Sul et al., 2011     ; Sul et al.,
2010     ), and mice (Bari et al., 2019     ; Grossman et al., 2022     ; Hattori et al., 2019     ; Tai et al.,
2012     ). Moreover, the paradigm has translational significance because it can reveal defects from
pharmacological interventions (Costa et al., 2015     ) or in animal models for psychiatric disorders
(Groman et al., 2018     ; Liao and Kwan, 2021     ; Villiamma et al., 2022     ).

Most analyses of rodents performing two-armed bandit and related decision-making tasks have
relied on simple reinforcement learning schemes such as Q-learning algorithms (Bari et al.,
2019     ; Groman et al., 2019     ; Hattori et al., 2019     ; Ito and Doya, 2009     ; Sul et al., 2010     ;
Wang et al., 2022     ), with some exceptions (Beron et al., 2022     ; Ito and Doya, 2015     ). Q-learning
algorithms assume that animals learn from experience, and therefore choice behavior adapts only
after a change point has occurred. By contrast, recent studies in monkeys and humans have
challenged this assumption.

Namely, primates can exploit predictable structure in a task and adjust for an impending change
point (Bartolo and Averbeck, 2020     ; Costa et al., 2015     ; Jang et al., 2019     ; Woo et al., 2023     ).
Indeed, under some situations, rodents also seem to make inferences about hidden states (Liu et
al., 2021     ; Starkweather et al., 2017     ; Starkweather et al., 2018     ; Vertechi et al., 2020     ; Woo et
al., 2023     ). These recent results hint at the possibility that mice may leverage their knowledge of
task structure for probabilistic reward learning.

To test the possibility that rodents may estimate change points during probabilistic reward
learning, we trained head-fixed mice on a two-armed bandit task. By analyzing a sizable data set
totaling 1,007 sessions involving 15,352 reversals, we demonstrate that mice are sensitive to
impending switches in reward probabilities, because they alter their choices prior to the actual
change points. We show that the animals’ choice behavior can be modelled effectively with a
Bayesian framework involving belief updating and choice kernels. Furthermore, we performed
unilateral and bilateral excitotoxic lesions and optogenetic inactivation to demonstrate
mechanistically how the anterior cingulate and premotor regions of medial frontal cortex may be
involved in the computation. Together, the results indicate that mice can take advantage of the
task structure to solve a classic probabilistic reward learning task and implicate the dorsal medial
frontal cortex as a locus in the accurate estimation of future changes in the state of environment.
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Results

Mice use their knowledge of the task
structure during a two-armed bandit task
We trained head-fixed C57BL/6J mice on a two-armed bandit task involving probabilistic reward
reversals. On each trial, the mouse could choose left or right by a directional tongue lick. The two
options were associated with different reward probabilities, e.g., “70:10” for 70% and 10% chance
to receive water from the left and right spouts respectively (Figure 1A – B     ). The reward
probabilities would flip when the animal reaches the switching condition, which is a performance-
dependent number of trials to fulfill a criterion (LCriterion, 10 trials choosing the better option)
followed by a performance-independent random number of trials (LRandom, drawn from a
geometric distribution with p = 0.0909 and truncated at 30). In an example session shown in
Figure 1C     , the animal performed more than 500 trials, including 15 reversals of 70:10 and 10:70
blocks. To visualize how animals adjust to the sudden changes in reward probabilities, we aligned
the trials by the time of block switches. As expected, mice primarily chose the better option pre-
switch, and then quickly adapted their preferred action post-switch (Figure 1D     , n = 31 mice, 617
sessions, 9,163 blocks).

An important parameter in our task is LRandom, which dictates the frequency of reversals.
Although the animals cannot know the exact value of LRandom before each switch because it is
drawn randomly, it is possible for the mice to learn the statistical distribution of LRandom. This
knowledge may then be used to infer that the more trials that an animal stays at the better option,
the more likely that a block switch might have already occurred. To determine if mice were
making use of such knowledge of the task structure, we analyzed the subset of 7,396 blocks (81%
of the total of 9,163 blocks) in which animals were adapting quickly after block switches
(achieving LCriterion in 20 or fewer trials), therefore focusing on expert-level performance and
avoiding periods when animals may be unmotivated. Figure 1E      shows the histogram of LRandom
values for these trial blocks, exhibiting the geometric distribution as the task was designed. We
found that if LRandom was large in the preceding block, the animals tended to choose the better
option less frequently prior to the block switch, and subsequently adapted faster after the block
switch (Figure 1F     ). The results were qualitatively similar if we included more or all blocks
(Supplementary Figure 1.1     ). Moreover, in a smaller number of animals (n = 10 mice, 48
sessions, 312 blocks), we trained them on a variant of the task in which the switching condition is
only determined by LRandom (i.e., LCriteiron = 0), and the animals exhibited comparable tendency
(Supplementary Figure 1.2     ). These results suggest that the mice may anticipate an impending
change point and adjust their behavior prior to the block switch.

To quantify the observations, we computed P (better option) pre-switch, the probability of selecting
the better option in the trial immediately before the block switch, and trials to reach midpoint, the
number of trials from switch for P (better option) to reach 0.5. These analyses confirmed the
influence of LRandom on choice patterns around a block switch (main effect of LRandom: F (30,
5544) = 6.0743, P < 0.001, one-way ANOVA; or if data were binned by 2: main effect of LRandom: F
(15, 5521) = 10.4589, P < 0.001; one-way ANOVA; Figure 1G     ) and their speed to adjust after a
block switch (main effect of LRandom: F (30, 711) = 2.1316, P < 0.001; or if data were binned by 2:
main effect of LRandom: F (15, 707) = 1.7407, P = 0.038; one-way ANOVA; Figure 1H     ). We reiterate
that the animal could not predict the exact value of LRandom for each block, which was drawn
randomly. However, the tendencies around a block switch are consistent with animals learning
the task structure, namely the distribution of possible values of LRandom, presumably through
repeated training over dozens of sessions on the two-armed bandit task. As the animal dwells in a
block selecting the same better option for many trials, it becomes more probable that a change
point in reward probabilities has occurred and therefore the animals should explore the alternate
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Figure 1

Mice were sensitive to block length and leverage
this information during the two-armed bandit task

(A) The mouse makes a left or right choice via tongue lick after the go cue. Depending on the reward probabilities, the choice
might lead to water. (B) Trials were organized into blocks, each with distinct reward probabilities: “70:10” (70% chance to
receive water for left choice; 10% for right) or “10:70” (10% for left; 70% for right). The block switches after the animal choose
the high-reward-probability side ten times (LCriterion) plus an additional random number of trials (LRandom, drawn from
exponential distribution, up to 30 trials). (C) Performance of a mouse in one example session. The top row shows reward
probabilities for left and right options. The bottom row shows the animal’s choices and the outcomes. (D) Choice behavior
around block switches. Thin line, mean values for individual animal. Thick line, mean values and SEM for all animals. (E)
Histogram of LRandom. For all blocks with LCriterion ≤ 20. Colors indicate the 4 ranges of LRandom for subsequent analyses. (F)
Choice behavior around block switches, plotted separately for the 4 ranges of LRandom. Mean values and SEM for all animals.
(G) The probability of choosing the better option on the trial immediately preceding the switch, as a function of LRandom for
the block preceding the switch. Mean values and SEM for all animals. (H) The number of trials to reach midpoint (when
animal is equally likely to choose either option) as a function of LRandom for the block preceding the switch. Mean values and
SEM for all animals. n = 31 mice, 617 sessions.
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option more. Overall, these results demonstrate that mice were sensitive to the block length – a key
feature of the task structure – and could leverage this information during the two-armed bandit
task.

Effects of unilateral lesion of ACAd/MOs
on choice behavior around switches
Prior studies implicated the anterior cingulate cortex in behavioral flexibility in the face of
variability in the environment (Behrens et al., 2007     ; Soltani and Izquierdo, 2019     ). The related
region in the mouse is the dorsal aspect of the medial frontal cortex, encompassing the anterior
cingulate (ACAd) and medial secondary motor (MOs) areas (Barthas and Kwan, 2017     ; Laubach et
al., 2018     ; Yang and Kwan, 2021     ). To determine the role of ACAd/MOs, we trained mice until
they reached expert performance, and then performed unilateral excitotoxic lesion by injecting
ibotenic acid into the ACAd/MOs region in the left or right hemisphere (n = 5 and 4 mice
respectively, 200 pre-lesion and 142 post-lesion sessions in total; Figure 2A     ). For clarity, we will
collapse the two groups and refer to trial blocks as ‘lesion’, if the lesioned side was the better
option, or ‘contra’ if the side contralateral to the lesion was the better option (Figure 2B     ). Post
hoc histology with cresyl violet staining confirmed the loss of cell bodies at the targeted ACAd/MOs
location (Figure 2C – D     ). After the lesion, animals performed a similar number of trials and
block switches (Supplementary Figure 2.1     ) and had no motor deficit in licking (Supplementary
Figure 2.2     ). Post-lesion mice exhibited block length-dependent choice patterns (Figure 2E     ).
However, with the unilateral loss of ACAd/MOs, for the switch from lesion block to contra block,
this tendency to choose the worse option pre-switch exacerbated with increasing LRandom (left
panel, Figure 2E     ). Summary of the data reaffirmed that animals with unilateral ACAd/MOs
lesion were selecting the worse option at the expense of exploiting the better option pre-switch,
specifically when LRandom was large in the preceding block (main effect of lesion: P < 0.001, main
effect of LRandom: P < 0.001, lesion * LRandom interaction: P = 0.044, three-way ANOVA; Figure
2F     , Supplementary Table 2.1     ). Although they appeared to adapt faster after the switch
relative to control animals (main effect of lesion: P < 0.001, main effect of side: P = 0.003, lesion *
side interaction: P = 0.038, LRandom * side interaction: P = 0.004, three-way ANOVA; Figure 2G     ),
overall the performance suffered after the lesion (main effect of lesion: P = 0.027, main effect of
side: P = 0.045, main effect of LRandom: P < 0.001, lesion * LRandom interaction: P = 0.027, three-way
ANOVA; Figure 2H     ). The data therefore show that unilateral lesion of the ACAd/MOs impairs the
proper estimate and use of task structure knowledge during probabilistic reward learning.

A hybrid model of belief and choice
kernels to explain the animals’ behavior
To gain insight into the empirical findings, we fitted different computational models to the data.
We were specifically drawn to two emerging ideas in the field of decision-making. First, the
concept of belief enables an agent to apply their knowledge of the task structure (Jang et al.,
2019     ). Namely, the two-armed bandit task in this study can be conceptualized as a task with two
‘states’ (‘70:10’ and ‘10:70’). For each state, there is an optimal action to take - either choosing left
or right, for 70:10 and 10:70 respectively. In this scheme, during each trial, the animal (or agent)
holds a belief.

This belief is the probabilities that the task is currently in one of the two states. Then, the agent
acts based on this belief. Once the result of the action is revealed, the animal’s belief is updated.
This update is influenced by the outcome and the animal’s knowledge of the task structure, which
can be approximated as its estimation of the likelihood of a reversal in reward probabilities,
which is a change point with hazard rate H. From a Bayesian perspective, the ‘prior’ is the initial
belief held by the agent about which state they are in before taking an action. This could be based
on their previous experiences or could be a neutral assumption if they have no prior experience.

https://doi.org/10.7554/eLife.103001.1
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Figure 2

Unilateral lesion of ACAd/MOs altered block-length-
dependent choice behavior and impaired overall performance

(A) Schematic representation of the unilateral excitotoxic lesion via injection of ibotenic acid. (B) Lesion blocks refers to
blocks in which the lesioned side is the better option. Contra blocks refer to blocks in which the lesioned side is contralateral
to the better option. (C, D) Post hoc histology with cresyl violet staining to confirm the loss of neurons in ACAd/MOs. (E)
Choice behavior around block switches, plotted separately for the 4 ranges of LRandom. Black, pre-lesion. Green, post-lesion.
Left, switches from lesion block to contra block. Right, switches from contra block to lesion block. Mean values and SEM for all
animals. (F) The probability of choosing the better option on the trial immediately preceding the switch, as a function of
LRandom for the block preceding the switch. Black, pre-lesion. Green, post-lesion. Mean values and SEM for all animals. (G)
Similar to (F) for number of trials to reach midpoint (when animal is equally likely to choose either option). (H) Similar to (F)
for hit rate (probability for animal to choose the better option). For (F) – (H), significant main effects and interactions from
three-way ANOVA were indicated (P < 0.05). n = 9 mice, 200 pre-lesion sessions and 142 post-lesion sessions.
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For example, the animal might initially believe it is equally likely to be in either the ‘70:10’ or
‘10:70’ state, or it might have a stronger belief in one state over the other based on past rewards.
Second, choice kernels can be used to capture an agent’s tendency to repeat the previous actions
(Wilson and Collins, 2019     ). The choice kernels are updated based on the prior action, scaled by a
learning rate. Our belief-CK model contains components for belief and choice kernels, and
integrates their outputs for action selection based on a softmax function with separate inverse
temperature parameters for belief, and choice kernel, (Figure 3A     , Supplementary Figure 3.1     
- 3.4     ). Fit to an example session of animal data suggests that this 4-parameter belief-CK model
can recapitulate the choice behavior of the mouse in the two-armed bandit task (Figure 3B – E     ).

We compared the belief-CK model against 7 other computational models (see Methods). We started
with the win-stay, lose-switch (WSLS) and 3 classic reinforcement learning algorithms including Q-
learning (Q-RPE), Q-learning with forgetting (F-Q-RPE), and Q-learning with differential forgetting
(DF-Q-RPE) (Ito and Doya, 2015     ). We then examined effects of adding choice kernels, by testing
DF-Q-RPE with choice kernels (DF-Q-RPE-CK), because DF-Q-RPE was the best fit in the initial set of
4 algorithms, and F-Q-RPE with choice kernels (F-Q-RPE-CK), because this model has the same
number of free parameters as the belief-CK model. Finally, we also tested the belief model alone
without choice kernels. Model comparison based on Bayesian information criterion (BIC) revealed
that inclusion of choice kernels improved the fits significantly. Moreover, the belief-CK model had
the lowest BIC values (Figure 3F     ; belief-CK versus F-Q-RPE-CK: t60= 2.562, P = 0.013, paired t-test;
belief-CK versus DF-Q-RPE-CK: t60= 2.313, P = 0.024), and was the best fit for 30 out of 31 animals in
this study (Figure 3G     ). For each session, we can simulate the belief-CK model using the best-
fitting parameters and compare the tendencies of the simulated and experimental data. This
exercise shows that the belief-CK model can capture the LRandom-dependent choice behavior in the
experimental data (Figure 3H – K     ), which is not possible with the classic reinforcement learning
algorithm DF-Q-RPE (Supplementary Figure 3.5     ). These analyses demonstrate that simple
models of reward-based learning such as Q-learning algorithms cannot fully account for the
observed choice behavior. Instead, the results support our intuition that mice were estimating
change points, which is formalized as the hazard rate H in the belief-CK model.

Unilateral ACAd/MOs lesion led to side-specific
increase in hazard rate for change points
Next, we applied the computational model to quantify the effect of unilateral ACAd/MOs lesion. To
account for the possibility of side-specific alterations, we modified the 4-parameter belief-CK
model to include 6 parameters to include differential learning for the sides ipsilateral and
contralateral to lesion (see Methods; Hlesion, HContra, αK lesion, αK Contra, β, and βK). After fitting the
expanded model to animal data, we compared pre-versus post-lesion performance in two ways.
First, on a per-animal basis, sessions before or after the lesion were concatenated for fitting to
yield one set of pre-lesion parameters and one set of post-lesion parameters for each animal.
Second, on a per-session basis, each session was analyzed separately and the fitted parameters
were summarized.

These analyses revealed a side-specific increase in hazard rate after unilateral ACAd/MOs lesion.
The exaggerated hazard rate for the side contralateral to lesion HContra was detected on a per-
animal basis (Figure 4A     ; pre- vs. post-lesion, HContra: P = 0.004; post-lesion, HContra vs. Hlesion: P
= 0.810, Wilcoxon signed-rank test), and on a per-session basis (Figure 4B     ; pre- vs. post-lesion,
HContra: P = 0.001; post-lesion, HContra vs. Hlesion: P < 0.001, Wilcoxon rank sum test). Unilateral
ACAd/MOs lesion also led to an increase in choice perseveration for both sides, reflected as higher
choice-kernel learning rates (Figure 4C – D     ; per-animal, pre- vs. post-lesion, αK lesion: P = 0.012;
αK Contra: P = 0.004; per-session, pre- vs. post-lesion, αK lesion: P < 0.001; αK Contra: P < 0.001,
Wilcoxon ranked sum test). Action selection depends on the inverse temperature sum, β+ βK,
reflecting the exploration-exploitation balance, and inverse temperature ratio,  reflecting the
relative reliance on belief over choice kernels. There was no detected difference in inverse

https://doi.org/10.7554/eLife.103001.1
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Figure 3

A hybrid model of beliefs and choice kernels to explain the behavior

(A) The schematic representation of the belief with choice kernel model (belief-CK). The model has four parameters: H
(hazard rate), β (inverse temperature for belief), αK (learning rate for choice kernel) and βK (inverse temperature for choice
kernel). (B – E) An example session along with the fits from the belief-CK model, including reward probabilities for left and
right options (B) the running-average of probability of choosing right for the animal (black) and model (purple) (C), the belief
that the left option is associated with reward probability of 10% (pL10, blue) or 70% (pL70, red) (D), and the choice kernels for
left (blue) and right options (red) (E). (F) Model comparison between the belief-CK model and 7 other models. Lower log BIC
values indicate a better fit. (G) The tally of the best-fitting model for each animal. (H) The probability of choosing the better
option on the trial immediately preceding the switch, as a function of LRandom for the block preceding the switch. Black, mice.
Purple, simulated performance using the belief-CK model with best-fitting parameters. Mean values and SEM for all animals.
(I) Similar to (H) for number of trials to reach midpoint (when animal is equally likely to choose either option). (J) Similar to
(H) for the tendency to win-stay on the 5 trials preceding the switch. (K) Similar to (H) for the tendency to lose-switch on the 5
trials preceding the switch. n = 31 mice, 617 sessions.
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temperature sum between pre- and post-lesion animals (Figure 4E – F     , per animal, P = 0.567; per
session P = 0.858, Wilcoxon signed-rank test). By contrast, the inverse temperature ratio was
heightened after the lesion (Figure 4G – H     , per animal P = 0.038; per session P = 0.001, Wilcoxon
signed-rank test). Collectively, these analyses show that the consequences of unilateral ACAd/MOs
lesion are a contralateral side-specific increase in hazard rate, and broad increases in choice
perseveration and reliance on belief for action selection.

Accurate change point estimation depends on the
balance between the left and right hemispheres
The results so far from unilateral lesions suggest two potential mechanisms for change point
estimation. The first possibility is that the computation of change point estimation is lateralized,
such that the left hemisphere is involved in estimation for the right side, and vice versa. If this is
the case, for a bilateral lesion, we would expect aberrant increases of hazard rates for both sides.
The second possibility is that the estimation of change points involves inter-hemispheric
coordination, which was perturbed by disruption of one hemisphere. If true, the lack of medial
frontal cortex on both sides could nullify their respective maladaptive influences on behavior, and
we may observe no or milder deficit after a bilateral lesion of ACAd/MOs. To distinguish between
these two possibilities, we injected ibotenic acid bilaterally to the left and right ACAd/MOs regions
in expert mice. Animals with bilateral lesions performed fewer trials per session, and accordingly
fewer block switches (Figure 5A – B     , Supplementary Figure 5.1     ; P < 0.001, Wilcoxon signed-
rank test), but had no motor deficit (Supplementary Figure 5.2     ). Surprisingly, and in line with
inter-hemispheric coordination, there was no detectable change in the LRandom-dependent choice
behavior (Figure 5C – D     , Supplementary table 5.1     ), and no significant changes in the latent
decision parameters including hazard rates (Figure 5E – H     ). Comparison to sham animals in
which saline was injected unilaterally (Figure 5I-P     , Supplementary table 5.2     ) highlights
again that the only effect of bilateral lesion was diminished motivation to perform the task, which
was also seen in a prior work from the lab (Siniscalchi et al., 2016     ). More importantly, these
results argue against change point estimation as a lateralized computation in ACAd/MOs, but
rather point to unbalance between the hemispheres as the reason for behavioral deficits.

Medial frontal cortex impacts the decisions during action selection
The lesion-induced effects may be a direct consequence of ACAd/MOs disruption, but some of the
behavioral changes can also be due to compensatory adjustments. Therefore, we additionally
performed transient inactivation experiments using optogenetics. Mice were implanted with a
clear-skull cap that has ∼50% optical transmission (Supplementary Figure 6.1A     ). For
photostimulation, we used a laser-steering system (Pinto et al., 2019     ), in which the excitation
beam from a 473 nm laser was steered by a set of mirror galvanometers to specific locations with
high spatial and temporal resolutions (Figure 6A     ). We calibrated the linearity of the steered
coordinates as a function of galvanometer voltages and the spatial profile of the laser beam
(Supplementary Figure 6.1B – C     ). We demonstrated that the system can effectively manipulate
neural activity by showing elevated c-fos immunohistostaining after unilateral photostimulation
of ACAd/MOs in CaMKIIaCre;Ai32 animals (Supplementary Figure 6.1D – F     ). Additionally, to
determine that our system can effectively bias animal’s behavior, we inactivated the primary
visual cortex (V1) and anterolateral motor cortex (ALM) by photostimulating parvalbumin-
expressing interneurons in PvalbCre;Ai32 animals. No effect was observed when silencing V1,
whereas biased tongue licks were induced by inhibiting ALM in mice during the two-armed bandit
task, consistent with previous findings (Guo et al., 2014     ) (Supplementary Figure 6.2     ).

To suppress excitatory activity in ACAd/MOs during block switches, we used PvalbCre;Ai32 animals
in which the channelrhodopsin ChR2 was selectively expressed in parvalbumin-expressing (PV)
GABAergic interneurons (n = 6). Targeted photostimulation would activate PV interneurons in the

https://doi.org/10.7554/eLife.103001.1
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Figure 4

Effects of unilateral lesion of ACAd/MOs is consistent with a side-specific increase in hazard rate

(A) The hazard rates, before and after lesion, extracted by fitting the belief-with-choice-kernel model on a per-animal basis.
Square, hazard rate for side ipsilateral to lesion. Cross, hazard rate for side contralateral to lesion. Inset, violin plot of the
same data. (B) The hazard rates, before and after lesion, on a per-session basis. Mean and SEM. (C – D) Similar to (A – B) for
learning rate for choice kernel. (E) The inverse temperature sum, before and after lesion, on a per-animal basis. (F) The
inverse temperature sum, before and after lesion, on a per-session basis. (G - H) Similar to (E – F) for inverse temperature
ratio. *, P < 0.05. n.s., not significant. n = 9 mice, 190 pre-lesion sessions and 140 post-lesion sessions.
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Figure 5

Effects of bilateral and sham lesions of ACAd/Mos

(A) The number of trials performed in each session, before and after bilateral lesion, on a per-session basis. Mean and SEM.
(B) Similar to (A) for the number of block switches in each session. (C) The probability of choosing the better option on the
trial immediately preceding the switch, as a function of LRandom for the block preceding the switch, before and after bilateral
lesion, on a per-session basis. Mean and SEM. Significant main effects and interactions from three-way ANOVA were indicated
(P < 0.05). (D) Similar to (C) for number of trials to reach midpoint (when animal is equally likely to choose either option). (E)
The hazard rates, before and after bilateral lesion, extracted by fitting the belief-CK model on a per-session basis. Mean and
SEM. (F) Similar to (E) for learning rate for choice kernel. (G) Similar to (E) for inverse temperature sum. (H) Similar to (E) for
inverse temperature ratio. (I – P) Similar to (A – H) for sham controls with unilateral saline injection. n.s., not significant. For
bilateral lesion, n = 4 mice, 105 pre-lesion sessions and 61 post-lesion sessions. For saline control, n = 4 mice, 117 pre-lesion
sessions and 53 post-lesion sessions.
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Figure 6

Optogenetic inactivation in pre-choice, but not post-choice,
period reproduced the deficit in change-point estimation

(A) The schematic representation of experimental setup. (B) CCD image of a mouse with a cleared skull cap. The tw blue
crosses indicate the locations of the photostimulation, i.e. left and right ACAd/MOs. (C - D) The trial and block structures, and
the timing of the photostimulation. (E) The probability of choosing the better option on the trial immediately preceding the
switch, as a function of LRandom for the block preceding the switch for pre-choice inactivation. Black, control blocks. Light
blue, Stimulated blocks. Blue, contralateral to stimulated blocks. Mean values and SEM for all animals. (F) The hazard rates
extracted by fitting a modified belief-CK model, for pre-choice inactivation, on a per-animal basis. (G) Similar to (F) for
learning rate for choice kernel. (H) Similar to (F) for inverse temperature sum. (I) Similar to (F) for inverse temperature ratio
(J-N) Similar to E-I for post-choice inactivation. n = 6 animals.
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left or right ACAd/MOs (Figure 6B     ), which would in turn silence local excitatory spiking activity
(Guo et al. 2014     ; Li et al. 2019). These transient inactivations were applied either at the time of
action selection (“pre-choice”, from cue onset to lick response) or after the outcome (“post-choice”,
from lick response for 2 s; Figure 6C     ), and on every trials across two consecutive blocks such
that activity was suppressed before and after certain block switches (Figure 6D     ).

Pre-choice inactivation impaired the ability of the mice to select the better option in the trials
immediately preceding the block switch, when the stimulated side was contralateral to the side
with the better option (Figure 6E     ), suggesting a lateralized influence of ACAd/MOs on decision-
making under conditions of uncertainty as observed in lesion data. In contrast, post-choice
inactivation did not produce significant changes in the selection of the better option immediately
before block switches (Figure 6J     , indicating that the effects of ACAd/MOs inactivation are
primarily restricted to the pre-choice period (three-way ANOVA: main effect of block length: F(3,
1999) = 49.778, P < 0.001; main effect of stimulation period: F (1, 1999) = 7.974, P = 0.004;
interaction between block length and stimulation: F(3, 1999) = 2.674, P = 0.046; interaction between
block length, stimulation and stimulation period: F(3, 1999) = 2.625, P = 0.049).

Fitting to the belief-CK model, expanded to account for the optogenetic stimulation (see Methods;
HControl, Hipsi stim, HContra stim, αK Control, αK ipsi stim, αK Contra stim, βControl, βstim, βK Control and βK

stim), highlights the strongest effect is an acute change to hazard rate contralateral to the transient
inactivation for pre-choice inactivation (Figure 6F     ; pre-choice inactivation, HContra stim vs. Hipsi

stim: P = 0.156; HContra stim vs. HControl: P = 0.094; Figure 6K     ; post-choice inactivation, HContra stim
vs. Hipsi stim: P = 0.687; HContra stim vs. HControl: P = 0.562, Wilcoxon signed-rank test), although
there were variations across individual animals and effect was not statistically significant There
were no detectable effects of transient inactivation on , and β + βk for pre-choice inactivation
(Figure 6G-I     ) or post-choice inactivation (Figure 6K-N     ). Together with the results from
unilateral lesions, we interpret these findings from acute inactivation to indicate that ACAd/MOs is
involved specifically in the change point estimation process, which occurs during the pre-choice
period.

Discussion

This study provides evidence that mice anticipate impending change points by altering their
choices prior to switches in a classic probabilistic reward learning task. Computational analyses
indicate that the animals’ choice behavior is consistent with a model of belief updating and choice
perseveration. Causal perturbation experiments emphasize the role of the ACAd/MOs region of the
medial frontal cortex. Crucially, as discussed below, the collective results from the range of
manipulations employed – unilateral and bilateral lesions, as well as pre- and post-choice
optogenetic inactivation – provide important insights that can constrain the potential neural
mechanisms underlying change-point estimation during decision-making.

Although many studies of decision-making in rodents relied on analyses involving Q-learning
algorithms, there are other reports suggesting deviations from simple reinforcement learning. For
instance, a pioneering study demonstrated that rats are exceedingly sensitive to changes in
reward rates, approximating an ideal observer (Gallistel et al., 2001     ). Moreover, several studies
using a variety of timing, operant conditioning, decision, and sensory categorization tasks have
found neural and behavioral data consistent with the use of belief in rodents (Karlsson et al.,
2012     ; Li and Dudman, 2013     ; Liu et al., 2021     ; Starkweather et al., 2017     ; Vertechi et al.,
2020     ). However, these prior studies are different because in some cases, the use of belief did not
necessarily confer better performance over other strategies for the task (Starkweather et al.,
2017     ). In other cases, the task employs a series of deterministic outcomes (Vertechi et al.,
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2020     ), which strongly favors switching behaviors. Our study therefore extends these past results
by showing decisions consistent with belief updating in one of the most popular value-based
decision-making tasks used for human and animal studies (Sutton and Barto, 2018     ).

To quantify the animals’ behavior, we proposed a model involving belief updating with a fixed
hazard rate, which was motivated by a prior study (Jang et al., 2019     ) and adapted to fit our task
design. In this model, the agent understands that each action is associated with one of two reward
probabilities. Given information from its choice and reward history as well as knowledge of the
probability of a switch in reward probabilities, the agent infers the likelihood of the current states
associated with the actions. This is in sharp contrast to the Q-learning algorithms, where the agent
is implicitly ignorant of the task structure, and simply updates action values based on the last
trial’s action and outcome. For belief updating, one limitation for our model is that the hazard rate
is a constant value within a session. This assumption seems reasonable because mice were trained
on the task extensively and probably accrue knowledge of the hazard rate based on experience of
multiple switches across many sessions. That said, in principle, it is possible for an agent to infer
and adjust the hazard rate as the task proceeds (Wilson et al., 2010     ). Moreover, there are other
models, such as ones based on a flexible learning rate, that can account for variable choice
behavior as a function of outcome history (Grossman et al., 2022     ). Future studies may employ
tasks that can more specifically disambiguate between the different ways in which mice may
adapt learning parameters within a session.

To determine the role of the medial frontal cortex, we used both permanent lesions and transient
inactivation, methods that each have its advantages and limitations (Otchy et al., 2015     ; Vaidya et
al., 2019     ) and they provide complementary insights into the functioning of this brain region.
Specifically for lesions, we employed unilateral manipulations, such that we can compare effects
between sides ipsilateral and contralateral to the lesion in the same animal, serving as a rigorous
internal control. Results from these experiments demonstrated lateralized deficits from lesions of
the medial frontal cortex. This finding may be surprising, because although sensory and motor
functions are typically expected to be lateralized, it is less obvious that cognitive function may also
be side-dependent. However, we note that a few prior studies have also found side-specific
decision-making deficits from unilateral manipulations, such as effects of dorsal striatum on
action values (Tai et al., 2012     ) and effects of frontal cortex on lapses in a multisensory task
(Pisupati et al., 2021     ) and short-term memory (Yin et al., 2022     ). There were also instances of
hemi-neglect in humans (Stone et al., 1991; Kerkhoff, 2001; Crowne et al., 1986; Reep and Corwin,
2009). The exact reason for side-specific effects is unclear, although one possibility is that when
decisions are intimately tied to responses associated with lateralized motor actions, then there is
embodiment and motor and premotor cortical regions become involved in the neural computation
(Bennur and Gold, 2011     ).

The various deficits arising from lesion and optogenetic manipulations are useful for thinking
about the potential mechanisms for how the medial frontal cortex contributes to belief updating
and more specifically change-point estimation. An inaccurate estimate, which would reflect as
altered hazard rate in our computational model, can occur for several reasons: (1) error in
estimating the value of hazard rate, (2) error when using the hazard rate to update belief, and (3)
error when using the prior choice and reward to update belief. Reason (3) was not explicitly tested
in our model fits but could manifest as an apparent change in hazard rate. Among these
possibilities, the first option seems unlikely. In our task, an accurate value for hazard rate cannot
be determined quickly but must be calibrated by experiencing many switches across multiple
sessions. This is difficult to reconcile with the immediate deficit observed with pre-choice
optogenetic inactivation. The third option is also unlikely. Previous studies have shown that
choice- and outcome-related signals arise in the medial frontal cortex shortly after the outcome
(Siniscalchi et al., 2019     ; Sul et al., 2011     ), whereas optogenetic inactivation during this post-
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choice period was ineffective. Therefore, it may be the case that the medial frontal cortex is
involved in incorporating the likelihood of an impending change point for estimating the current
task state.

Furthermore, rather than computing using a probability such as the hazard rate, the animal may
instead approximate the process by employing simpler heuristics to predict the impending
occurrence of a change point. One intuitive heuristic, consistent with the reason for lateralized
deficits, is that the animals may rely on the recent choice history of the number of better options
chosen, which would indicate a higher likelihood of an impending switch. Here, the lack of effect
from bilateral lesions can shed light on the form of the heuristic. For example, one heuristic that
can work is a ratio of the number of recent left choices divided by the number of recent right
choices, and if the unilateral lesion effectively adds a multiplier to the side’s choice history, then a
bilateral perturbation would lead to a null effect. Heuristics based on choice history are plausible
because the medial frontal cortex has long-lasting, persistent representation of past choices (Bari
et al., 2019     ; Hattori et al., 2019     ; Siniscalchi et al., 2016     ; Sul et al., 2011     ). One caveat for this
line of logic is that it is based on a specific belief updating model. However, we discuss the
implications to illustrate how the results can inform the underlying neural basis.

To sum, the two-armed bandit task has gained widespread use in neuroscience and artificial
intelligence research because of its simplicity, translational significance, and amenability to
computational modeling. Our results show that mice may perform the task by not only updating
based on choices and outcomes, but also leverage knowledge of the environment to estimate
change points. The diminished or exaggerated use of this prior knowledge represents suboptimal
decision-making, which may underlie pathological behaviors in neuropsychiatric disorders that
involve dysfunctions of the medial frontal cortex.

Methods

Lead Contact
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Huriye Atilgan (huriye.atilgan@dpag.ox.ac.uk)

Materials Availability
All published reagents and mouse lines will be shared upon request within the limits of the
respective material transfer agreements. Detailed plans including parts list for constructing the
behavioral training apparatus is available at https://github.com/Kwan-Lab/behavioral-rigs     .

Data and Code Availability
Data and analysis software for this paper will be available at Github (https://github.com/Kwan-
Lab     ).

Experimental model and subject details

Mouse lines

In this study, we used a total of 30 adult male mice (Table 1; 2 - 8 months old), including 24
C57BL/6J wild-type mice (#000664, Jackson Laboratory) for the lesion experiments, and 6
PvalbCre;ROSACAG-ChR2-EYFP(Ai32) mice for the photostimulation experiments. The
PvalbCre;ROSACAG- ChR2-EYFP(Ai32) mice were generated by crossing the PvalbCre(B6.129P2-
Pvalbtm1(cre)Arbr/J; #017320, Jackson laboratory) and ROSACAG-ChR2-EYFP(Ai32) (B6.Cg-
Gt(ROSA)26Sortm32 (CAG- COP4*H134R/EYFP)Hze/J; #024109, Jackson laboratory) strains. Mice were
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housed in groups of 2 – 5 per cage in a 12h:12h light:dark cycle with ad libitum access to food. All
of the experiments were completed during the light cycle. Experimental procedures were
approved by the Yale University Institutional Animal Care and Use Committee.

Method details

Surgery for lesion experiments

All of the mice in the lesion study underwent two surgeries. In the first surgery, a stainless steel
headplate was attached to the skull to facilitate behavioral training. After collecting baseline
behavioral data, a second surgery consisting of either an excitotoxic or sham lesion was
performed. Before each surgery, the animal was treated pre-operatively with carprofen (5 mg/kg,
i.p.; 024751, Butler Animal Health) and dexamethasone (3 mg/kg, i.p.; Dexaject SP, #002459, Henry
Schein Animal Health). At the start of each surgery, anesthesia was induced with 2% isoflurane in
oxygen, and the animal was placed on a water-circulating heating pad (TP-700, Gaymar Stryker).
The head was secured in a stereotaxic frame with ear bars (David Kopf Instruments). Following
induction, isoflurane concentration was lowered to 1 – 1.5% based on the animal’s weight and
breathing pattern.

For the first surgery, the scalp was shaved using scissors and cleaned with povidone-iodine
(Betadine, Perdue Products L.P.). A narrow portion of the scalp was removed along the midline
from the interaural line to a line visualized just posterior to the eyes. The scalp was retracted to
expose the dorsal aspect of the skull and washed thoroughly with artificial cerebrospinal fluid
(ACSF; in mM: 5 KCl, 5 HEPES, 135 NaCl, 1 MgCl2, and 1.8 CaCl2; pH 7.3). A scalpel and a ballpoint
pen were used to scratch and paint marks onto the skull at the secondary motor and anterior
cingulate cortices (MOs/ACAd; +1.5 mm AP, +0.3 mm ML from bregma), to be used as a landmark
for the second surgery. A custom-made stainless-steel head plate (eMachineShop) was then bonded
to the skull with cyanoacrylate glue (Loctite 454, Henkel) and transparent dental acrylic (C&B
Metabond, Parkell Inc.), with care taken to cover any remaining exposed skull. The post-operative
care was provided immediately, and for three consecutive days following surgery, consisting of
carprofen (5 mg/kg, i.p.) for analgesia and preservative-free 0.9% NaCl (0.5 mL, i.p.) for fluid
support. The animal had at least one week for post-operative recovery prior to the onset of
behavioral training.

For the second surgery, a 1-mm-diameter circular craniotomy was made over the marked spot
using a high-speed rotary drill (K.1070, Foredom). A total of ∼300 nL of ibotenic acid (5 mg/mL in
saline; 505024, Abcam) was injected into two locations (+1.5 mm and +1.7mm AP, +0.3 mm ML
from bregma; 0.4 mm DV) through a glass micropipette attached to a microinjection unit (Nanoject
II, Drummond). More specifically, each location would receive 15 pulses of 9.6 nL of the prepared
solution. To minimize backflow of the injected solution, there was a 1 min gap between each pulse,
and the micropipette was left in place for 20 min after the last pulse. Sham animals underwent the
same surgical procedure, but saline was delivered instead of ibotenic acid. The exposed skull was
covered with dental cement. The animal had two weeks of post-operative recovery prior to
resuming behavioral testing.

Surgery for photostimulation experiments

All of the mice in the photostimulation study underwent one surgery. The animal was anesthetized
in the same way as described above. Procedures to prepare the skull were nearly identical to those
described in (Pinto et al., 2019     ). Briefly, the scalp covering the dorsal skull surface was excised
and the periosteum over the skull was removed using a micro-curette (VWR Buck Micro Curette,
10806-346). The skull was washed thoroughly with ACSF. A custom stainless-steel head-plate
(eMachineShop) was affixed at points above the cerebellum and olfactory bulbs with
cyanoacrylate glue (Loctite 454, Henkel) and transparent dental acrylic (C&B Metabond, Parkell
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Inc.). The exposed skull was covered with a thin layer of cyanoacrylate glue (Apollo 2000,
Cyberbond) and transparent dental acrylic, then polished with an acrylic polishing kit (0321,
PearsonDental), and finally covered with transparent nail polish (72180, Electron Microscopy
Services). The animal had at least one week of post-operative recovery prior to the onset of
behavioral training.

Behavioral training apparatus

The apparatus for training head-fixed mice was adapted from (Siniscalchi et al., 2016     ). Detailed
plans including parts list for constructing the behavioral training apparatus is available at https://
github.com/Kwan-Lab/behavioral-rigs     . Briefly, the behavioral box was constructed using a closed
compartment of an audio-visual cart (4731T74, McMaster-Carr) that was soundproofed with
acoustic foam (5692T49, McMaster-Carr). The mouse was placed in an acrylic tube (8486K433,
McMaster-Carr), which allowed for postural adjustments but restricted large body movements.
Two metal screws were used to attach the head plate of the mouse onto a custom stainless-steel
mount (eMachineShop). The lickometer was based on a 3D-printed part that held two lick ports
constructed from 20-gauge needles, and was placed in front of the mouse such that the lick ports
are on the left and right of the animal’s mouth. The position of the lick ports relative to the mouse
could induce considerable side bias and influence response time. To mitigate variations across
sessions, the lickometer was attached to an XYZ translation stage (MT3, Thorlabs) for precise
positioning, and the same set of coordinates were used for the same mouse between sessions.

Water was supplied to the lick ports via Tygon tubing (EW-95666-01, Cole-Parmer). A touch
detector circuit was used for detecting tongue licks onto each lick port. Water was delivered at the
lick ports by gravity feed and controlled by solenoid valves (EV-2-24; Clippard or MB202-V-A-3-0-L-
204, Gems Sensor Solenoid). The water amount is controlled by the duration of a TTL pulse, and
we calibrated the solenoid to deliver ∼2 βL per pulse. All of the electrical circuits for water
delivery and lick detection were connected to a desktop computer via a data acquisition board
(USB-201, Measurement Computing). A pair of speakers (S120, Logitech) were positioned in front
of the animal for auditory stimuli (calibrated to 80 dB). The tasks were programmed in scripts
using the Presentation software (Neurobehavioral Systems), which controlled the entire
behavioral apparatus including stimulus presentation. A table lamp (LT-T6, Aukey) was placed in
each box, behind the mouse, to provide dim ambient light in the box. A camera (SV-USBFHD01M-
BFV, Svpro) was used to optimize the lick port position at the beginning of each session and
monitor the animal’s behavior throughout the session.

Two-armed bandit task

Mice were fluid-restricted. On training days, animals received all of their water intake from
behavioral training that occurred 1 session per day, 5 days per week. On non-training days and
days when weight measurements fell below 85% of their pre-restriction weight, water was
provided ad libitum in the home cage for 5 minutes.

Prior to any behavioral training, the animal was handled and habituated to head fixation for
increasing durations over three days. Water was manually provided via the lick ports to
familiarize mice with receiving fluid from the lickometer. After 1 – 2 days of habituation, the
animal underwent two phases of shaping.

In the first phase, the animal was trained to alternate between the two lick ports to receive water
rewards. More specifically, on each trial, there would be an auditory cue (duration = 0.2 s, tone
with 5 kHz carrier frequency). The onset of the auditory cue is the start of a 5-s long response
window, during which the first lick detected is the animal’s response. The playback of the auditory
cue was terminated early if the response was recorded before the entire stimulus was played. The
animal was required to alternate between left and right responses to earn water rewards: if the
last rewarded response was left, then the mouse must make a right response to receive water, and
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vice versa. The inter-trial interval had a fixed duration, such that the auditory cue for the next
trial would occur 3.1 s after the animal’s response. A session would end when the animal did not
lick during the response window (‘miss’) for 20 consecutive trials. When the animal could attain at
least ∼60 rewards in a session, the shaping would proceed to the second phase.

In the second phase, the animal still had to alternate, but was trained to the trial structure
including withholding licks between trials. The second phase was similar to the first phase, with
two exceptions. First, the onset of the auditory cue is the start of a 2-s long response window,
during which the first lick detected is the animal’s response. Second, the addition of a no-lick
period between trials. The no-lick period began 3 s after the animal’s response. Initially, the
duration of the no-lick period was drawn from a truncated exponential distribution (λ = 0.33333,
minimum = 1, maximum = 5). If any lick was detected during the no-lick period, then another
duration drawn from the same truncated exponential distribution would be added onto the end of
the first no-lick period. The addition could repeat for up to 5 times if the animal could not
withhold licking. Therefore, the possible duration for the entire no-lick period ranged between 1
and 25 s, and was dependent on whether the animal could withhold licking. Subsequently, the
auditory cue for the next trial would occur 0.1 s after the end of the no-lick period. When the
animal could receive rewards in at least ∼40% of all trials, it would be advanced to the two-armed
bandit task. Typically, the animal would proceed through each shaping phase in 3 or fewer
sessions.

In the two-armed bandit task, the auditory stimulus, response timing, and inter-trial interval
including no-lick period were exactly the same as the second shaping phase. However, the
outcome of each trial was probabilistically determined. In a 10:70 block of trials, the left lick port
had a 10% chance of delivering water if chosen and the right lick port had a 70% chance of
delivering water if chosen. By contrast, in a 70:10 block of trials, the reward probabilities
associated with the left and right ports were reversed. Hence, the better option is right in a 10:70
block, but left in a 70:10 block. At the start of each session, the block type (10:70 or 70:10) was
randomly chosen.

The block type would switch when the mouse fulfilled the switching condition: perform trials
(LCriterion) until the animal accumulated 10 choices selecting the side with high reward
probability, and then perform additional trials (LRandom) that were drawn from a truncated
geometric distribution (p = 0.0909, no minimum = 0, maximum = 30). Notably, LCriterion depended
on the animal’s performance, whereas LRandom was random and independent of performance.
The block type would continue to switch, as long as the animal was fulfilling the switching
condition of each block. In the lesion experiments, they would be tested on the two-armed bandit
task in daily sessions until at least 150 switches were collected for each of the pre- and post-lesion
conditions.

Photostimulation

The photostimulation rig allowed for rapid adjustment of the position of the laser. The rig was
constructed based on the design in (Pinto et al., 2019     ). Briefly, a 473 nm laser beam (Obis LX 473
nm, 75 mW; 1193830, Coherent) was steered by a set of XY galvo mirrors (6210H, Cambridge
Technologies) mounted in a ThorLabs 60 mm cage system. The laser was sent through a F-theta
scan lens (f = 160 mm; FTH160-1064-M39, ThorLabs) and directed onto the animal’s head. A
monochromatic camera (Grasshopper3; GS3-U3-23S6M-C, Point Grey) equipped with a telecentric
lens (TEC-55, Computar) was used to visualize the cortical surface and to calibrate the position of
the laser beam relative to bregma. The laser, mirrors, and camera were controlled via a data
acquisition board (PCIe-6343, National Instruments) by custom software written in MATLAB on a
desktop computer. The laser was calibrated to yield a time-averaged power of 1.5 mW at the
sample. Light transmission through the clear-skull cap (dental cement and skull) was measured by
placing the cap at the sample plane, and positioning a laser power meter underneath the cap.
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Animals underwent the same shaping phases and task training. For the photostimulation
experiments, the animal was tested on the two-armed bandit task in a behavioral setup within the
photostimulation rig. Temporally, the photostimulation could occur either before or after the
animal’s response. For pre-choice photostimulation, the laser was turned on at the onset of the
auditory cue and turned off immediately when a response was detected. For post-choice
photostimulation, the laser was turned on immediately when a response was detected and turned
off 2 s later. Spatially, the photostimulation was targeted to one of two possible locations: left
MOs/ACAd (+1.5 mm AP, - 0.3 mm ML from bregma) or right MOs/ACAd (+1.5 mm AP, +0.3 mm ML
from bregma).

At the start of each session, the timing of the photostimulation (pre-choice or post-choice) was
randomly chosen and stayed the same for the entire session. The initial 3 – 5 blocks were always
control blocks, i.e., no photostimulation. The rationale was to make sure the animal was
performing the task well that day before any perturbation. Subsequently, the next 2 blocks would
be photostimulation blocks targeting the same spatial location, followed by 2 control blocks,
followed by 2 photostimulation blocks targeting the same spatial location, and so on. For the
photostimulation blocks, the spatial location was randomly selected to be left or right MOs/ACAd
each time. In other words, in the same session, the animal may receive perturbation of both left
and right MOs/ACAd, albeit in different trial blocks.

To prevent the animal from using stray laser light to distinguish photostimulation from control
blocks, we implemented a masking stimulus by shining a blue LED at the eyes. The masking
stimulus had the same onset timing and duration as the photostimulation used for the session, and
was applied for every trial in both control and photostimulation blocks.

Histology

To determine the extent of the lesions, following behavioral experiments, the mouse was deeply
anaesthetized with an overdose of isoflurane and transcardially perfused with chilled
formaldehyde solution (4%, in phosphate-buffered saline (PBS)) at a rate of 5 mL/min. The brain
was quickly removed, stored overnight in the formaldehyde solution at 4 °C, and then switched to
PBS for long-term storage. Coronal sections with a thickness of 100 μm were cut using a vibratome
(VT1000 S, Leica).

For cresyl violet staining, cresyl violet (1 g/L; 10510-54-0, Sigma Aldrich) was added to filtered H2O
and stirred overnight. The next day, glacial acetic acid (2.5 mL/L; 64-19-7, Sigma Aldrich) was
added to the solution. The tissue sections were washed with filtered H2O before mounting on glass
slides and stained with a pre-warmed (50°C) cresyl violet solution. The sections were dehydrated
with ascending grades of alcohol (95% for 10 minutes, 100% twice for 10 minutes each), cleared
with xylene (twice for 5 minutes each), and mounted with DPX mounting medium (06522,
MilliporeSigma).

For NeuN staining, tissue sections were washed three times with PBS and then incubated with a
blocking solution (5% normal goat serum, 0.3% Triton X-100, in PBS) for 1 hour at room
temperature. Subsequently, sections were incubated with rabbit monoclonal primary antibody
against NeuN (1:500 dilution; ab177487, Abcam Inc,) overnight at 4°C on the shaker. After washing
three times with PBS, tissue sections were incubated with goat anti-rabbit secondary antibody
with conjugated Alexa 488 (1:500 dilution; ab150077, Abcam Inc,) for 2.5 hours at room
temperature. After washing with PBS, nuclear staining was performed by incubating with a 4′,6-
diamidino-2-phenylindole (DAPI) staining solution (ab228549, Abcam Inc.) for 10 minutes. Finally,
sections were washed three times with PBS and then with filtered H2O, before mounting on slides
with DPX mounting medium (06522, MilliporeSigma). A motorized upright fluorescence
microscope (Olympus BX61, Olympus) was used to image the sections.
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Quantification and statistical analysis

Analysis of behavioral data

Timestamps of the behavioral events, including cue onsets, outcome onsets, licks, and reward
probabilities were logged to a text file by the NBS Presentation software. The text files were parsed
and analyzed using scripts written in MATLAB (MathWorks, Inc.). For all of the analyses, we
excluded the session if the animal had fewer than 4 block switches. We analyzed all of the trials up
to the last switch, and ignored the trials in the last incomplete block where by definition had many
miss trials.

When analyzing the consequences of unilateral lesions, for simplicity, we used the term lesion
blocks and contra blocks. This is because unilateral lesions were randomly assigned to the left or
right hemisphere for each animal. Lesion blocks refer to those blocks where the lesioned side is
the same as the better option. In other words, if the animal had a unilateral lesion on the right
hemisphere, then the lesion blocks correspond to 10:70 blocks. If the animal had a unilateral
lesion on the left hemisphere, then the lesion blocks correspond to the 70:10 blocks. The
remainder was referred to as the contra blocks.

Analysis of behavioral data – effects of block length

For analyses involving block lengths, we used the subset of data in which LCriterion≤ 20 trials for
the pre-switch block, in order to restrict the analyses to situations where the performance was
similar.

The probability of choosing the better option pre-switch, P (better option) pre-switch, was
determined for each animal by examining the last trial before each block switch, dividing the
number of times in which the animal chose the initial better option (i.e., the side with 70% reward
probability before switch) by the number of switches. Hit rate was the proportion of trials in
which the animal selected the better option. The win-stay probability, P (stay | win), was the
fraction of trials in which animals repeated a choice after a rewarded trial. The lose-switch
probability, P (switch | lose), was the fraction of trials in which an animal switched its choice after
an unrewarded trial. For all of these performance metrics, we computed the metric on a session-
by-session basis, then averaged across sessions to obtain per-animal value. In the lesion data, P
(better option) pre-switch, P (stay | win) and P (switch | lose) was calculated in the last five trials
before each block switch

Trials to reach midpoint was determined by first calculating the fraction of trials for choosing the
initial better option around the block switch for the animal, and then identifying the trial from the
switch where the fraction of trials choosing the initial better option was closest to 0.5 To compute
the trials to reach the midpoint metric, we would first concatenate data across sessions including
inserting 20 NaN in the gaps, then compute the metric to obtain the per-animal value. This allowed
us to calculate the fraction of trials, resulting in a smoother switching curve for each different
LRandom block. After establishing this more reliable switching curve, we were able to determine
the trial from the switch for each animal.

Analysis of behavioral data – reinforcement learning models

The response-by-response behavior of the animal was fitted with eight models: (1) win-stay lose-
switch (WSLS); (2) Q-learning (Q-RPE); (3) Q-learning with forgetting (F-Q-RPE); (4) Q-learning with
differential forgetting (DF-Q-RPE); (5) F-Q-RPE with choice kernel (F-Q-RPE-CK), which captured the
tendency to repeat the same option; (6) DF-Q-RPE with choice kernel (DF-Q-RPE-CK); (7) belief
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model that uses the prior knowledge of a change point in reward probabilities to make a decision
(7) belief model with choice kernel (belief-CK). We will describe these models in detail in the
following paragraphs.

For win-stay lose-switch (WSLS), if the last trial was rewarded, the agent would repeat to choose
the same option with probability p. Else, if the last trial was unrewarded, the agent would switch
to choose the other option with probability p. This model has 1 free parameter: p.

For the three simple Q-learning models (Q-RPE, F-Q-RPE, DF-Q-RPE), the updating rules are as
follows. On trial n, for a choice cn that leads to an outcome rn, the reward prediction error δn is:

where  is the action value associated with the chosen action i. In our task, there are two options,
so i ɛ {L, R}. For the outcome, rn = 1 for reward, 0 for no reward. The action value for each action is
then updated accordingly:

where α is the learning rate, λ are the forgetting terms for the unchosen action. Then on the next
trial, the probability of choosing each action was determined by a softmax rule:

where β is the inverse temperature parameter.

The model as stated with 3 free parameters — α, λ, and β — is referred to as Q-learning with
differential forgetting (DF-Q-RPE). A special case of this model is when, λ = α, which is referred to
as Q-learning with forgetting (F-Q-RPE). Another special case is when, λ = 0, which is referred to as
Q-learning (Q-RPE).

For two Q-learning models with choice kernel (F-Q-RPE-CK, DF-Q-RPE-CK), choice kernel was
implemented to capture the tendency of choosing the previous choice. We adapted the
formulation from (Wilson and Collins, 2019     ). The choice kernel  on trial t associated with
action i is updated in a manner analogous to the action values:

where αK is the choice-kernel learning rate. For action selection with both action values and choice
kernels, the probability of choosing each action was determined by a softmax rule:

where β and βK are the inverse temperature parameters for the action values and choice kernels
respectively. Note that the term within the numerator on the right-hand side can be re-arranged:

Where (β + βK) is the effective inverse temperature parameter reflecting the exploration-
exploitation balance, and  is a ratio indicating the relative reliance on expected reward rather
than perseveration in action selection.
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Analysis of behavioral data – belief models

In the belief model, the agent knows two aspects about the task structure. First, the left option can
have reward probabilities of either 10% or 70%. It follows that the right option would have the
other reward probability. These are the two possible hidden states of the environment. Second, the
reward probabilities will reverse with a certain frequency characterized by a hazard rate, H. In
each trial, the animal has a belief, which consists of the likelihood that the left option has a reward
probability of 10%, ρL10, and the likelihood that the left option has a reward probability of 70%,
ρL70. The constraints are that ρL10 + ρL70 = 1, ρR10 =1 - ρL70 and ρR70 =1 - ρL70. At the start of a
session, we set the prior as a uniform distribution, so the ρR10 = ρL70 = ρprior = 0.5. At the end of
each trial, the belief is updated. The possibility of a reward probability switch is considered:

Similarly, ρL70 is updated and then ρL10 and ρL70 are normalized to sum to 1. Next, inference is
made based on the outcome following Bayes’ rule, which states that P (belief | observation) =
P(belief) * P (observation | belief):

or if the animal chooses right, then ρR10 and ρR70 would be updated instead. Again, the
probabilities for the belief are normalized to sum to 1. With the updated belief, the expected
rewards for the left and right options can be calculated directly, for example:

Action selection then proceeds using the same softmax equation as Equations 3      or 5     , with the
expected rewards replacing the action value terms, for the belief and belief with choice kernels
models respectively. The belief model has two free parameters, H and β. The belief model with
choice kernel model has four free parameters H, β, αK, and βK.

Parameter fitting and model evaluation

For each animal, trials across sessions were concatenated. The values for the free parameters were
determined by fitting each model to the concatenated data using the Bayesian adaptive direct
search (BADS) algorithm with default settings (Acerbi and Ma, 2017     ). The initial values for α, λ,
H, αK, β and βK were set to 0.3, 0.3, 0.1, 0.2, 5 and 5 respectively. The lower bound of parameters
were set to 0 and the upper bound was set to 100 for inverse temperatures and 1 for the rest of the
parameters. To evaluate the models, we calculated the Bayes information criterion (BIC).

where Nm is the number of parameters in model m. T is the number of trials used to estimate the
parameters and LL is the negative log-likelihood value at the best fitting parameter settings. The
model that best fits the data should have the smallest BIC score as the positive effect of the number
of parameters, Nm, has an explicit penalty for free parameters.

The parameters used for the simulated data for the belief model with choice kernel was the best-
fitting parameters of one animal (H = 0.320, β = 1.387, αk=0.468, βK = 2.543 with 300,000 trials,
approximately 9000 switches as in the experiment data). The belief model with choice kernel was
used to analyze the latent variables for lesion and photostimulation data.

https://doi.org/10.7554/eLife.103001.1


Cayla E Murphy et al., 2024 eLife. https://doi.org/10.7554/eLife.103001.1 23 of 45

To fit the lesion data, we modified the belief-CK model. Different parameters for hazard rate and
choice kernel learning rate were used depending on if the animal’s choice in the current trial is
ipsilateral or contralateral to the lesion side. This yields an expanded model with 6 parameters:
Hlesion, HContra, αK lesion, αK Control, β, and βK. To fit the data on a per-animal basis, trials across
sessions before lesion were concatenated, and trials across sessions after lesion were
concatenated. To fit the data on a per-session basis, we estimated the parameters for each session.

To fit the optogenetics data, we modified the belief-CK model. Different parameters for hazard rate
and choice kernel learning rate were used depending on if the animal’s choice in the current trial
is ipsilateral or contralateral to the photostimulated side, or if the animal’s choice occurred in a
control trial with no photostimulation. Different parameters for inverse temperatures were used
depending on if the current trial was photostimulation or control. This yields an expanded model
with 10 parameters: Hipsi stim, HContra stim, HControl, αK ipsi stim, αK Contra stim, αK Control, βControl,
βstim, βK Control, and βK stim. Per each animal fittings, trials across sessions for pre-choice
stimulation and post-choice stimulation were concatenated. Per session fittings was not used for
this dataset as total number of trials within a session did not give a reliable estimate for the ten
parameters fittings.

Statistical Analyses

All statistical analyses were completed using MATLAB (version 2019b, MathWorks). Three-way
ANOVA was used to examine the effect of the lesion on behavioral performance. For datasets with
a matched number of data points, Wilcoxon signed-rank test was used; otherwise, Wilcoxon
ranked sum test was used. Unless otherwise specified, we used an alpha level of 0.05 for all
statistical tests.
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Supplementary Figure 1.1

Animal’s choice behavior around block switches with different performance criteria

(A) The equation for the switching condition, or block length (BL), which is the sum of Lcriterion and LRandom. (B) Choice
behavior around block switches, plotted separately for 4 ranges of BL. Mean values and SEM for all animals. All data were
included. (C) Similar to (B), including data in which Lcriterion ≤ 20 trials. (D) Choice behavior around block switches, plotted
separately for 4 ranges of LRandom. Mean values and SEM for all animals. All data were included. (E) Similar to (C), including
data in which Lcriterion ≤ 50 trials.
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Supplementary Figure 1.2

Animal’s choice behavior in a task variant without Lcriterion

(A) Choice behavior around block switches in a task variant without Lcriterion. All the trial timing and reward probabilities are
identical, except the switching condition consists of only LRandom. Thin line, mean values for individual animal. Thick line,
mean values and SEM for all animals.
(B) Histogram of LRandom. for all blocks. Colors indicate the 4 ranges of LRandom for subsequent analyses. (C) Choice behavior
around block switches, plotted separately for the 4 ranges of LRandom. Mean values and SEM for all animals. (D) The
probability of choosing the better option on the trial immediately preceding the switch, as a function of LRandom for the block
preceding the switch (in 2 datapoints bin; main effect of LRandom: F (14, 204) = 1.8068, P = 0.0394 one-way ANOVA) Mean
values and SEM for all animals. (E) The number of trials to reach midpoint (when animal is equally likely to choose either
option) as a function of LRandom for the block preceding the switch (in 2 datapoints bin; main effect of LRandom: F (14, 120) =
1.0734, P = 0.3883 one-way ANOVA). Mean values and SEM for all animals. n = 10 mice, 48 sessions, 312 blocks.

Supplementary Figure 2.1

No decrease in overall performance after unilateral lesion of ACAd/Mos

The total number of trials and block switches per session before (pre) and after (post) the unilateral lesion.
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Supplementary Figure 2.2

No motor deficits after unilateral lesion of ACAd/Mos

Mean left and right lick density for each possible combination for choice (left or right) and outco e (reward or no reward). No
significant difference was detected between pre- and post-unilateral lesion.
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Supplementary Figure 3.1

Belief-CK model: effect of varying the hazard rate

The belief-CK model was used to simulate an agent’s choice behavior in the two-armed bandit task with probabilistic reward
reversal. Parameters were selected based on the best fitting values from an animal. Each column shows the results using a
different hazard rate (= 0.01, 0.25, 0.5, 0.75, 1) while all other parameters were kept constant (n = 300,000 trials, = 1.387,
=0.468, = 2.543). Top row shows the mean fraction of trials choosing the better and worse options for 4 different LRandom
ranges for 10 trials before and after the block switch. Middle row shows the P (better option) pre-switch as a function of
LRandom. Mean and SEM. Bottom row shows the mean number of trials to reach midpoint as a function of LRandom.

https://doi.org/10.7554/eLife.103001.1
https://doi.org/10.7554/eLife.103001.1


Cayla E Murphy et al., 2024 eLife. https://doi.org/10.7554/eLife.103001.1 29 of 45Cayla E Murphy et al., 2024 eLife. https://doi.org/10.7554/eLife.103001.1 29 of 45

Supplementary Figure 3.2

Belief-CK model: effect of varying choice kernel learning rate.

Similar to Supplementary Figure 3.1     , with different choice kernel learning rates (= 0.01, 0.25, 0.5, 0.75, 1) while all other
parameters were kept constant (n = 300,000 trials, = 0.320, = 1.387, = 2.543).
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Supplementary Figure 3.3

Belief-CK model: effect of varying beta sum.

Similar to Supplementary Figure 3.1     , with different beta sum (= 0, 1, 3, 5, 10) while all other parameters were kept
constant (n = 300,000 trials, = 0.320, = 0.468). was set to equal to.
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Supplementary Figure 3.4

Belief-CK model: effect of varying beta ratio.

Similar to Supplementary Figure 3.1     , with different beta ratios (0.01, 0.25, 0.5, 0.75, 1) while all other parameters were
kept constant (n = 300,000 trials, = 0.320, =0.468, = 2.543). was fixed and was calculated based on the beta ratio values.
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Supplementary Figure 3.5

DF-Q-RPE algorithm cannot reproduce the LRandom-dependent trends in the experimental data.

(A) The probability of choosing the better option on the trial immediately preceding the switch, as a function of LRandom for
the block preceding the switch. Black, mice. Purple, simulated performance using the DF-Q-RPE model with best-fitting
parameters. Mean values and SEM for all animals. (B) Similar to (A) for number of trials to reach midpoint (when animal is
equally likely to choose either option). (C) Similar to (A) for the tendency to win-stay on the 5 trials preceding the switch. (D)
Similar to (A) for the tendency to lose-switch on the 5 trials preceding the switch. Mean and SEM. n = 31 mice, 617 sessions.

Supplementary Figure 5.1

Fewer trials but similar performance after bilateral lesion of ACAd/Mos

The total number of left- and right-responding trials, reward rates, and hit rates before (pre) and after (post) the lesion.
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Supplementary Figure 5.2

No motor deficits after bilateral lesion of ACAd/Mos

Mean left and right lick density for each possible combination for choice (left or right) and outco e (reward or no reward). No
significant difference was detected between pre- and post-bilateral lesion.
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Supplementary Figure 6.1

Validation of the laser steering system for optogenetic
manipulation: characterization and c-Fos staining

(A) Optical transmission of the clear skull cap preparation was measured by illuminating with a laser and recording intensity
using a power meter. Mean and SEM. n = 5. (B) Linearity of the galvanometers in the x and y directions. (C) Beam profile was
measured at the sample plane by inserting and moving a razor blade across the plane using a micromanipulator. (D - F) In
CaMKIIaCre;Ai32 animals, cortical excitatory neurons express ChR2. After unilateral photostimulation of the left ACAd/MOs
region (40 Hz, 1.5 mW, 1 min on then 1 min off repeatedly for 20 min), immunohistostaining with a c-Fos antibody showed
elevated signals.
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Supplementary Figure 6.2

Inactivating left and right ALM during two-armed bandit task

(A) In PvalbCre;Ai32 animals, parvalbumin-expressing neurons including fast-spiking interneurons in the neocortex express
ChR2. Photostimulation of a brain region drives spiking in the interneurons, which in turn suppresses excitatory activity. Lick
raster recorded in an example session, in which trials were sorted based on the photostimulation (None: no stimulation;
ALM-L: left anterior lateral motor cortex, AP=2.5 mm, ML=-1.5 mm; ALM-R: right anterior lateral motor cortex, AP=2.5 mm,
ML=1.5 mm; V1-L: left primary visual cortex, AP=-2.7 mm, ML=-2.5 mm; V1-R: right primary visual cortex, AP=-2.7 mm, ML=2.5
mm). (B) The number of trials of each type per session. (C) Percent of trials resulted in a miss, as a function of trial type. (D)
Percent of trials resulted in a left response, as a function of trial type. (E) Percent of trials resulted in a right response, as a
function of trial type. These results show that transient inactivation of ALM increased ipsilateral responses at the expense of
contralateral responses. 9 sessions from 3 animals.

https://doi.org/10.7554/eLife.103001.1
https://doi.org/10.7554/eLife.103001.1


Cayla E Murphy et al., 2024 eLife. https://doi.org/10.7554/eLife.103001.1 36 of 45Cayla E Murphy et al., 2024 eLife. https://doi.org/10.7554/eLife.103001.1 36 of 45

Supplementary Table 2.1

The results of three-way between-subjects ANOVA with factors of lesion (pre- and post-lesion), side (lesion blocks and Contra
blocks), and LRandom (4 LRandom ranges) for P(better option)pre-switch, trials to reach midpoint and hit rates. p < 0.05 in bold.
All dependent variables calculated for each block across sessions. (Error = 3285; 2399; 3285; 3285; 2816;3187 for P (better
option) pre-switch, trials to reach midpoint and hit rates respectively

Supplementary Table 5.1

The results of two-way between-subjects ANOVA for bilaterally injected animals with factors of lesion (pre- and post-lesion
and LRandom (4 LRandom ranges) for P(better option) pre-switch, trials to reach midpoint and hit rates. p < 0.05 in bold. All
dependent variables calculated for each block across sessions. (Error = 1356;911;1356; for P (better option) pre-switch, trials to
reach midpoint and hit rates respectively
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Supplementary Table 5.2

The results of two-way between-subjects ANOVA for saline injected animals with factors of lesion (pre- and post-lesion and
LRandom (4 LRandom ranges) for P (better option) pre-switch, trials to reach midpoint, hit rates, P(lose | switch), P(win | stay). p
< 0.05 in bold. All dependent variables calculated for each block across sessions. (Error = 1871;1217; 1871 for P (better option)

pre-switch, trials to reach midpoint and hit rates respectively.
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Reviewer #1 (Public review):

Summary:

In this manuscript, the authors train mice on a two-armed bandit task, in which the reward
value associated with the arms suddenly switches in a pseudorandom fashion. Their first
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finding is that the mice are able to anticipate the reward value switch points after long
blocks, evident both prior to the switch point with higher rates of switching to the less-
rewarded arm, and after the switch point with faster transition to the more-rewarded arm.
They next find that unilateral ACAd/MO lesion / optogenetic silencing (surprisingly) causes
greater anticipation of reward switch points, both prior to and after the switch point. They
use behavioral modeling to argue that the unilateral ACAd/MO lesion effects are due to an
increase in the contralateral hazard rate. Finally, they found that bilateral lesions did not
have any effect on the hazard rate, suggesting that the unilateral lesion effect is due to
balancing between hemispheres. This manuscript employed a clever behavioral design and
analysis approach, though the effects were somewhat difficult to interpret and the author's
interpretation relies heavily on the accuracy of their underlying behavioral model.

Strengths:

This paper employs a well-designed task that allows the researchers to detect whether mice
have noticed a change in reward value both before and after the change takes place. The use
of unilateral and bilateral inactivation experiments allowed the authors to test the role of the
ACAd/MO region in the change point estimation. They found that unilateral inactivation, but
not bilateral inactivation, had a significant effect on behavior. They performed sophisticated
behavioral analysis to determine how ACAd/MO perturbations affect decision-making
variables. This topic is of interest to the field, and the results are presented clearly and
generally convincing.

Weaknesses:

The observed effects of the lesions are somewhat counterintuitive, with lesions appearing to
affect persistence within a block more than change point detection itself-the mice actually
adjusted more quickly to changes in reward values. Moreover, they had no issue detecting
change points after bilateral inactivation. As a result, I'm not sure if the main framing of the
article (including the title) is supported by their findings. Finally, I was unsure how the
differences between unilateral and bilateral inactivation could be explained by their
behavioral model.

https://doi.org/10.7554/eLife.103001.1.sa3

Reviewer #2 (Public review):

Summary:

The manuscript by Murphy et al. titled "Change point estimation by the mouse medial
prefrontal cortex during probabilistic reward learning" investigated the role of the mPFC in
the exploitation of task structure. Previous work had shown that monkeys and humans
exploit predictable task structures (e.g., switching rapidly when heavily trained a reversal
learning task), but whether this was also the case for mice was not known. To test this,
Murphy et al. trained head-fixed mice on a two-armed bandit task in which the contingencies
reversed when mice met a performance criterion (10 trials choosing the better option) plus
an additional random number of trials (referred to as Lrandom). They found that as the
length of Lrandom increased, mice began to exhibit pre-emptive switching in their choices as
if they were expecting and/or anticipating the reversal to occur. They report that unilateral
lesions of the mPFC (ACC + MO) led to earlier pre-emptive switching (although I found this
part of the manuscript the most challenging to understand) and faster post-reversal switching
that they argue reflects an impairment in the proper estimation of the reversal. They also
report that this requires inter-hemispheric coordination because bilateral lesions did not
further impair this estimation. Optogenetic inhibition just prior to the mouse making a choice
recapitulated some of the behavioral metrics observed in the mPFC lesioned animals. Finally,
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the authors developed a novel hybrid belief-choice kernel model to provide a computational
approach to quantifying these behavioral differences.

Strengths:

The paper is extremely well written and was an absolute pleasure to read. The results are
novel and provide exciting (although not surprising) evidence that mice exploit task
structures to earn rewards. Moreover, the experiments were well-designed and included
appropriate controls and/or control conditions that support their findings.

Weaknesses:

Some of the results need to be clarified and/or language changed to ensure that readers will
understand. Restricting analyses to expert mice that show the predicted effect is problematic.

https://doi.org/10.7554/eLife.103001.1.sa2

Reviewer #3 (Public review):

Summary:

The authors examine the role of the medial frontal cortex of mice in exploiting statistical
structure in tasks. They claim that mice are "proactive": they predict upcoming changes,
rather than responding in a "model-free" way to environmental changes. Further, they
speculate that the estimation of future change (i.e., prediction of upcoming events, based on
learning temporal regularities) might be "a main ... function of dorsal medial frontal cortex
(dmFC)." Unfortunately, the current manuscript contains flaws such that the evidence
supporting these claims is inadequate.

Strengths:

Understanding the neural mechanisms by which we learn about statistical structure in the
world is an important goal. The authors developed an interesting task and used model-based
techniques to try to understand the mechanisms by which perturbation of dmFC influenced
behavior. They demonstrate that lesions and optogenetic silencing of dmFC influence
behavior, showing that this region has a causal influence on the task.

Weaknesses:

I was concerned that the main behavioral effects shown in Figure 1F were a statistical
artifact. By requiring the Geometric block length to be preceded by a performance-based
block, the authors introduce a dependence that can generate the phenomena they describe as
anticipation.

To demonstrate this, I simulated their task with an agent that does not have any anticipation
of the change point (Reviewer image 1). The agent repeats the previous action with
probability p̀(repeat) ̀(similar to the choice kernel in the author's models). If the agent doesn't
repeat then the next choice depends on the previous outcome. If the previous choice was
rewarded, it stays with P̀(WS) ̀and chooses randomly with 1̀-P(WS).̀ If the previous choice was
unrewarded, it switches with P̀(LS) ̀and chooses randomly with 1̀-P(LS).̀
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Review image 1.

An agent with P̀(WS)=P(LS)=P(repeat)=0.85 ̀shows the same phenomena as the mice: a
difference in performance before the block switch and "earlier" crossing of the midpoint
after the switch. https://imgdrop.io/image/aHn6y. The phenomena go away in the simulations
when a fixed block length of 20 trials is followed by a Geometric block length.

The authors did not completely rely on the phenomena of Figure 1F for their conclusions.
They did a model comparison to provide evidence that animals are anticipating the switch.
Unfortunately, the authors did not use state-of-the-art methods in this section of the paper. In
particular, they failed to show that under a range of generative parameters for each model
class, the model selection process chooses the correct model class (i.e. a confusion matrix). A
more minor point, they used BIC instead of a more robust cross-validated metric for model
selection. Finally, instead of comparing their "best" anticipating model to their 2nd best
model (without anticipation), they compared their best to their 4th best (Supp Fig 3.5). This
seems misleading.

Given all of the the above issues, it is hard to critically evaluate the model-based analysis of
the effects of lesions/optogenetics.

https://doi.org/10.7554/eLife.103001.1.sa1
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Author response:

We appreciate the reviewers' thoughtful and constructive comments. In this provisional
response, we aim to address what we see as the key critiques, with a detailed, point-by-point
reply to be provided alongside the revised manuscript. Below, we outline how we intend to
address these critiques in the revised manuscript.

(1) We will revise sections of the manuscript to ensure that all results, particularly those
concerning the effects of lesions, are described more clearly and with sufficient context. This
includes providing additional visualizations and rewording any ambiguous statements.

(2) In this study, we examined a subset of 7,396 blocks where animals quickly adapted after
block switches (achieving LCriterion in 20 or fewer trials), thereby focusing on expert-level
performance and avoiding periods that might be affected by low motivation. It is valid to
question whether the same observations would hold if the full dataset were analyzed. To
address this, we expanded our analysis to include a supplementary figure Supplementary
Figure 1.1 that illustrate the same relationships based on block length (BL) instead of
LRandom, both with and without the restriction on LCriterion (n = 9,156 blocks in which the
block length is under 100 trials, without any LCriterion restrictions), and based on LRandom
without any LCriterion restrictions and with a less stringent LCriterion restriction (with ≤ 50
Trials for the criterion). This method allowed us to include all trials in our dataset. We
observed similar effects of block length on choice behavior around switches (Figure 3),
confirming the consistency of our findings across different analytical conditions.

(3) We agree that robust validation of model selection is crucial. To address this, we will
generate a confusion matrix to assess whether our model selection process accurately
identifies the correct model class across a range of generative parameters. Include additional
model selection metrics, such as cross-validation, to complement the BIC analysis and provide
a more robust comparison of models.

(4) We acknowledge the concern regarding our comparison of the "best" and the "4th best"
models. The "4th best" model was chosen because it is the most widely recognized in the
literature. Our intention was to demonstrate the performance of the most commonly used
model, but we understand how this may have been misleading. To address this, we will revise
our comparison to focus on the "best" and the "2nd best" models, ensuring greater clarity in
the manuscript. Additionally, we will include supplementary simulation results and figures to
provide a more comprehensive analysis on models.

https://doi.org/10.7554/eLife.103001.1.sa0
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