Review article [C](http://crossmark.crossref.org/dialog/?doi=10.1038/s41583-024-00876-0&domain=pdf)heck for updates and the check for updates and t

Structural neural plasticity evoked by rapid-acting antidepressant interventions

Clara Liao1,2, Alisha N. Dua  ³ , Cassandra Wojtasiewicz1 , Conor Liston3,4 & Alex C. Kwan  1,3

Abstract

A feature in the pathophysiology of major depressive disorder (MDD), a mood disorder, is the impairment of excitatory synapses in the prefrontal cortex. Intriguingly, diferent types of treatment with fairly rapid antidepressant effects (within days or a few weeks), such as ketamine, electroconvulsive therapy and non-invasive neurostimulation, seem to converge on enhancement of neural plasticity. However, the forms and mechanisms of plasticity that link antidepressant interventions to the restoration of excitatory synaptic function are still unknown. In this Review, we highlight preclinical research from the past 15 years showing that ketamine and psychedelic drugs can trigger the growth of dendritic spines in cortical pyramidal neurons. We compare the longitudinal efects of various psychoactive drugs on neuronal rewiring, and we highlight rapid onset and sustained time course as notable characteristics for putative rapid-acting antidepressant drugs. Furthermore, we consider gaps in the current understanding of drug-evoked in vivo structural plasticity. We also discuss the prospects of using synaptic remodelling to understand other antidepressant interventions, such as repetitive transcranial magnetic stimulation. Finally, we conclude that structural neural plasticity can provide unique insights into the neurobiological actions of psychoactive drugs and antidepressant interventions.

¹Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA. ²Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA. ³Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA. 4 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.  e-mail: alex.kwan@cornell.edu

Sections

Introduction

Excitatory synaptic deficits in depression

Longitudinal preclinical studies of antidepressant-evoked structural plasticity

Translational opportunities

Gaps and challenges

Conclusions

Introduction

Dendritic spines are the sites of excitatory inputs in pyramidal neurons^{[1](#page-10-3)}. The morphology of dendritic spines is closely related to the presence and strength of excitatory synaptic connections², which are important parameters defining the wiring of neural circuits. It has long been appreciated from animal studies that psychoactive drugs can induce synaptic plasticity^{[3](#page-10-5)}, which can be observed as changes in the density and size of dendritic spines. Typically, for neocortex, these structural modifica-tions occur after the chronic administration of a psychoactive drug^{[4](#page-10-6)}. Over the past decade, a series of studies used longitudinal in vivo optical imaging to track dendritic spines in the mouse neocortex across days, showing that a single dose of specific drugs leads to long-lasting structural remodelling. Drugs with this plasticity-promoting quality include ketamine^{5-[8](#page-10-8)}, serotonergic psychedelics^{[9](#page-10-9),10} and related analogues^{11,12}, which are either approved or being tested in late-phase clinical trials for their rapid-acting antidepressant effects $13-15$. There is interest from a basic science perspective in understanding how these drugs rapidly promote synaptic rewiring. Incentives also exist for pharmaceutical research, which could leverage structural plasticity to screen new chemical entities that might be candidate drugs for treating mental health conditions.

Depressive disorders present in various forms, ranging from mild, temporary episodes to the most severe and debilitating condition, major depressive disorder (MDD). A particularly challenging subset of MDD is treatment-resistant depression, in which patients fail to respond adequately to first-line antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs), prompting the need for alternative treatments. Growing evidence indicates that MDD is asso-ciated with excitatory synaptic deficits^{[16](#page-10-15)}. Rapid-acting antidepressant drugs have been postulated to target synapses by enhancing neural plasticity 17 , a mechanism that might also be key for other antidepressant interventions, such as electroconvulsive therapy $(ECT)^{18}$ $(ECT)^{18}$ $(ECT)^{18}$ and repetitive transcranial magnetic stimulation $(TMS)^{19}$ $(TMS)^{19}$ $(TMS)^{19}$. These interventions can reduce depressive symptoms within days (ketamine 20) or a few weeks (ECT^{[21](#page-10-20)} and accelerated forms of repetitive TMS²²). Their therapeutic onset is fairly rapid compared with conventional antidepressant drugs (such as SSRIs) and alternative invasive stimulatory techniques (such as deep brain stimulation and vagus nerve stimulation), which can take more than a month to show efficacy. Therefore, given the probable importance of neural plasticity as a potential mechanism of action, preclinical research that delineates antidepressant-evoked effects on the structural rewiring of neurons could shed light on the neurobiology that underlies different treatment options for MDD. Nevertheless, scepticism exists around whether structural plasticity is a sensitive measure or even relevant to the behavioural effects. The adult brain is plastic and synaptic modifications are constantly occurring, particularly after new experiences and learning^{[23](#page-10-22)-25}. Moreover, drugs of abuse (for example, cocaine) with negative behavioural consequences are also known to cause structural plasticity of dendritic spines in the neocortex $26,27$ $26,27$.

In this Review, we begin by critically reviewing the human data suggesting abnormalities of excitatory synapses in depression, focusing on the prefrontal cortex. We compare the in vivo turnover dynamics of dendritic spines induced by putative rapid-acting antidepressant drugs in preclinical models relative to other types of drugs. We highlight characteristics unique to antidepressant-evoked neuronal remodelling and their potential biological underpinnings. Finally, we discuss the translational opportunities and challenges in using in vivo structural plasticity to advance our understanding of antidepressant interventions.

Excitatory synaptic deficits in depression

To begin, we discuss evidence of synaptic deficits and maladaptive plasticity in studies of humans with depression, as well as the effects of antidepressant interventions on these processes.

Synaptic and morphological abnormalities

The most direct study of the relationship between dendritic spines and MDD in humans uses electron microscopy to analyse post-mortem samples from individuals with MDD and shows fewer spine synapses in layer 2/3 of the dorsolateral prefrontal cortex compared with control individuals 28 . Moreover, there are reports of reduced expression of dendritic markers and synaptic proteins associated with MDD^{[28](#page-10-0),[29](#page-10-1)}. Positron emission tomographic (PET) imaging of synaptic radioligands reveals diminished signals in the prefrontal cortex, anterior cingulate cortex and hippocampus of individuals with MDD compared to healthy individuals, with the amount of synaptic signal reduction correlating with the severity of depressive symptoms 30 . In agreement, in vivo magnetic resonance spectroscopy of individuals with MDD indicates lower glutamate and glutamine concentrations in frontal cortical regions compared with healthy individuals^{[31](#page-11-0),[32](#page-11-1)}. As an integral component in excitatory neurotransmission, such evidence for diminished glutamate signalling is indicative of synaptic deficits in MDD. However, questions remain regarding the origin of the signal from metabolic versus neurotransmitter pools and relative contributions from neuronal and glial cells³³. Nevertheless, these convergent pieces of evidence suggest excitatory synaptic impairments in MDD.

Genomic and transcriptomic studies have strongly implicated excitatory synaptic dysfunction and prefrontal cortical regions in MDD^{34,35}. In a meta-analysis of >1.2 million individuals, three of the eight most significant gene ontology categories associated with depression are synapse assembly, synapse organization and synaptic signalling; of note, some of the included studies used formally diagnosed MDD and others a broader definition of depression^{[35](#page-11-4)}. In another large-scale analysis, four out of five gene sets enriched in depression phenotypes encode cellular components for excitatory synapse, neuron spine, postsynapse and dendrite, therefore emphasizing excitatory synaptic function and structure as a major site for perturbance in depression³⁶. These and other genome-wide association studies have also identified specific risk genes for depression that could contribute to the synaptic deficits, including those supporting glutamatergic ionotropic and metabotropic receptors, dopamine receptors, calcium-binding proteins^{[36](#page-11-5)} and genes involved in synapse development, presynaptic vesicle trafficking and synapse-related major histocompatibility complex function³⁷. Bulk and single-cell RNA sequencing of post-mortem brain samples from individuals with MDD and control individuals similarly reveal altered expression of genes related to synaptic transmission and regulation of synaptic plasticity associated with MDD 38,39 38,39 38,39 .

Structural MRI studies of individuals with depression have consistently reported a reduction in cortical thickness and grey matter volume in certain brain regions. These effects were initially described in the hippocampus⁴⁰ and subgenual prefrontal cortex⁴¹, but gross volumetric changes are also evident in the anterior cingulate cortex, orbital frontal cortex, amygdala, insula and other locations $42,43$. However, questions about the effect size and whether these changes are a consequence of or a precursor to MDD remain⁴⁴. Moreover, post-mortem samples from individuals with MDD show that the loss of brain volume in the prefrontal cortex is accompanied by abnormalities at the cellular level, which include decreased size and density of neurons and glial cells^{[45](#page-11-14)}. Therefore, synapse loss in the neuropil can contribute to a potential

decrease in brain volume; however, it would probably be only one of several relevant factors.

Maladaptive plasticity and functional connectivity

Non-invasive neurostimulation techniques such as TMS can be used to produce motor-evoked potentials (MEPs) in humans. Single-pulse TMS delivers isolated magnetic pulses, primarily for diagnostic or brain mapping, whereas repetitive TMS (including accelerated TMS) involves protocols that apply a series of high-frequency stimulation for therapeutic purposes. Changes in MEPs induced by both single-pulse and repetitive TMS, as measured by electromyography or electroencephalogram recordings, are thought to be indicators of synaptic plasticity in the stimulated circuits. For instance, the paired associative stimulation (PAS) paradigm modulates corticospinal plasticity by applying repeated stimuli to the peripheral median nerve and the contralateral motor cortex⁴⁶. These PAS-induced changes to MEPs can be blocked by administering an *N*-methyl-D-aspartate receptor $(NMDAR)$ antagonist^{[46](#page-11-15)}, which suggests a mechanism involving excitatory synaptic plasticity. Individuals with MDD show no change in MEP amplitude after paired associative stimulation, unlike healthy control individuals⁴⁷. Of note, the deficient MEP response to PAS observed in MDD can return to a normal level with remission of depression, suggest-ing that the corticospinal plasticity tracks recovery^{[48](#page-11-17)}. Whereas these findings require replication in larger cohorts, the approach reveals a potential deleterious consequence of excitatory synaptic deficits in MDD. Although the PAS paradigm has been primarily demonstrated in the motor cortex, modified protocols have been developed to target the dorsolateral prefrontal cortex, revealing maladaptive neural plasticity in individuals with MDD 49 . These studies are promising but preliminary, with drawbacks including the variation in stimulation effects depending on ongoing brain activity and the large inter-individual and intra-individual variability 50 .

Functional MRI is used to investigate circuit-level dynamics in human volunteers. Although resting-state functional connectivity is not a specific readout of synaptic activity, it is an aggregate measure that necessarily incorporates synapse-level signalling. A large consortium study of 1,300 individuals with MDD identifies hypoconnectivity within the default mode network as a hallmark of the disease^{[51](#page-11-20)}. Moreover, this result was replicated in another multi-centre study of more than 600 individuals with MDD 52 . Multiple smaller-scale meta-analyses of individuals with MDD have instead reported hyperconnectivity within the default mode network^{[53,](#page-11-22)54}. Hypoconnectivity within the frontoparietal network has been reported as a marker of MDD 53 , but it was absent in a later investigation 51 . These contradictory results might be attributed to the substantial heterogeneity in the presenta-tion of depression^{[55](#page-11-24)[–57](#page-11-25)}; even the most robust depression-associated features have been shown to have extremely small effect sizes when assessed using common neuroimaging modalities⁵⁸. Identifying depression-associated and treatment-associated changes within and between specific networks and circuit pathways remains a crucial yet elusive goal. However, the hope is that advancements in precision functional mapping, using densely sampled longitudinal data from the same individuals, could soon make this goal possible $59,60$ $59,60$.

Antidepressant interventions

In individuals with MDD, the effect of antidepressant interventions on excitatory synaptic deficits is not well understood. Non-invasive neurostimulation via repetitive TMS of the left dorsolateral prefrontal cortex has impressive efficacy as an antidepressant treatment 22,61,62 22,61,62 22,61,62 22,61,62 22,61,62 .

One study suggests that MEPs are reliably increased in individuals with MDD after repetitive TMS treatment, a strengthening that correlates with the improvement in depressive symptoms 63 . The electrophysiological and symptom changes in individuals with MDD induced by repetitive TMS can be facilitated by co-treatment with p-cycloserine 64 . which as a partial NMDAR agonist is expected to boost excitatory synaptic plasticity. Magnetic resonance spectroscopy shows elevated prefrontal glutamate and glutamine metabolite levels in individuals with depression after ketamine treatment⁶⁵ and after ECT^{66} ECT^{66} ECT^{66} . The degree of ECT-related change in glutamate levels in the anterior cingulate cortex correlates with the behavioural outcome⁶⁷.

The relevance of excitatory neural plasticity to the overall treatment mechanism remains unclear owing to two main challenges for human studies. First, there is the issue of causality, as individuals with depression are often already on a course of SSRIs or might have only recently discontinued psychiatric medications, making it difficult to disentangle and isolate the effect of the treatment being studied. Second, progression is not tracked longitudinally, and currently there is no method available to interrogate synapse-level changes directly and repeatedly in humans. For these reasons, animal models provide a unique opportunity for studying how antidepressant interventions affect neural plasticity. Preclinical studies have shown that dendritic spines in cortical neurons are targeted for remodelling by ketamine⁶⁸, classic psychedelics (for example, psilocybin and 5-MeO-DMT)^{[69,](#page-11-37)70}, ECT^{71} ECT^{71} ECT^{71} and repetitive TMS^{72,[73](#page-11-41)}. These early studies have paved the way for studying the effect of antidepressant interventions on structural plasticity, but they have relied on in vitro preparations or histological methods that assess only a single time point. The latest animal studies over the past decade have leveraged chronic imaging to longitudinally track dendritic spines in the brain in vivo, which has been particularly valuable in uncovering the dynamic rewiring process and delineating time courses. These advances are our focus in the next section.

Longitudinal preclinical studies of antidepressant-evoked structural plasticity

Here, we evaluate the nuanced changes of drug-evoked plasticity in mice in response to antidepressant drugs compared with other psychoactive drugs.

Antidepressant drugs versus other drugs

In the mammalian neocortex, most excitatory synapses are located at dendritic spines in pyramidal neurons (Box [1](#page-3-0)). Laser scanning two-photon-excited fluorescence microscopy can be used to track structural neural plasticity by imaging the turnover of dendritic spines in the mouse (Fig. [1](#page-4-0), Box [2](#page-5-0)). Most in vivo imaging studies of antidepressant treatments so far have focused on antidepressant drugs. Here, to illuminate the crucial plasticity mechanisms, we summarize published studies^{5-[12,](#page-10-12)[74](#page-11-42)-[80](#page-11-43)} that have quantified the dynamic turnover of dendritic spines in mice following the administration of putative rapid-acting antidepressant drugs, and we contrast them with responses to other psychoactive drugs (Supplementary Table 1).

We first consider a subset of these experiments in which dendritic spine density in cortical pyramidal neurons has been tracked over many days, surveying three drugs with known and putative therapeutic effects for MDD in humans (ketamine⁵, 5-MeO-DMT^{[10](#page-10-10)} and psilocybin⁹) and four drugs of other classes (allopregnanolone⁷⁴, diazepam⁷⁴, zolpidem⁷⁴ and cocaine⁷⁵). Spine density data are available longitudinally through 7–15 imaging sessions, covering from pre-drug administration to 15 days after drug administration for ketamine and

Box 1 | Dendritic spines as a proxy for excitatory synapses

Most dendritic spines are sites of excitatory synapses. Upon sensing glutamate released from apposing presynaptic terminals, dendritic spines depolarize and the electrical signals spread for neuronal communication. Biochemically, the unique head-and-neck geometry of a spine suggests that certain molecular signals are compartmentalized to facilitate spine-specific plasticity^{162,[163](#page-13-1)}. During postnatal development, synaptic connections are created and pruned, resulting in high spine turnover rates¹⁶⁴. In the mature brain, structural plasticity slows down to maintain a fairly steady number of synapses^{[164](#page-13-2)}, yet spines are still malleable in response to novel experience²⁵ and learning^{[23](#page-10-22)[,24](#page-10-26)}, or in neuropsychiatric disorders¹⁶⁵. New dendritic spines emerge after the induction of long-term potentiation¹⁶⁶.

A foundational assumption of this Review is that the existence of a dendritic spine indicates the presence of an excitatory synapse on the cortical pyramidal neuron. Electrophysiology supports this assumption: for example, the frequency of miniaturized postsynaptic currents is considerably increased the day after psilocybin administration in mice, demonstrating enhanced excitatory neurotransmission that corroborates the imaging results showing enhanced spine density^{[9](#page-10-9)}. More direct evidence came from electron microscopy that can resolve dendritic spines at high spatial resolution^{153,167}. Early studies suggest that 70–95% of the excitatory synapses on cortical

63 days after drug administration for diazepam. Some experiments test a single dose of the compound whereas others involve chronic administration. The drugs act on various receptors and transporters with distinct synaptic localization (Fig. [2a\)](#page-6-0).

Ketamine, primarily an NMDAR antagonist 81 81 81 , has been studied at subanaesthetic doses and is an FDA-approved medication for treatment-resistant depression $20,82$ $20,82$, 5-MeO-DMT and psilocybin act on serotonergic receptor subtypes^{[83](#page-11-47),84}, which together with other classic psychedelics have long been recognized for their therapeutic potential^{[85](#page-11-49)} and are undergoing clinical trials as treatments for MDD and treatment-resistant depression^{[86](#page-11-50)-88}. Allopregnanolone, a positive allosteric modulator of the $GABA_A$ receptor via binding on the neurosteroid site⁸⁹, is approved for treating postpartum depression. Diazepam and zolpidem, also positive allosteric modulators of the $GABA_A$ receptor^{[90](#page-11-53)}, are benzodiazepines administered to treat anxiety and insomnia. Cocaine inhibits the uptake of monoamine neurotransmitters, such as via its action on the dopamine transporter, and is a drug of abuse⁹⁰. Here, we list the primary targets, although these drugs probably interact with other receptors. For instance, ketamine and its metabolites can act on NMDAR-independent signalling pathways, including opioid receptors⁸¹.

For visualization, we have extracted data values from published studies (Box [3](#page-7-0); Supplementary data). Plotting the results across studies on the same axes reveals that the drugs exert differential effects on dendritic spine density in cortical pyramidal neurons (Fig. [2b](#page-6-0)). A single dose of ketamine⁵, 5-MeO-DMT¹⁰ or psilocybin^{[9](#page-10-9)} rapidly increases the spine number density of cortical pyramidal neurons by 12–20% in mice. In the ketamine study, the spine density starts to decline after 2 weeks (ref. [5\)](#page-10-7), but it stays elevated for at least 1 month in the 5-MeO-DMT and

pyramidal neurons are formed at dendritic spines^{[1](#page-10-3)}. A more recent study shows that only 3.6% of Golgi-stained, optically imaged spines in the mouse neocortex lack synapses¹⁶⁷. However, whether these spines are functional is less clear, as a recent report based on expansion microscopy and patch clamp recording suggests that up to 25% of the dendritic protrusions in layer 5 pyramidal neurons in the adult mouse brain are filopodia-like, electrically silent synapses⁹⁹. Collectively, these results indicate that almost all dendritic spines contain synaptic elements, with the majority being functional excitatory synapses.

The size of a dendritic spine is thought to be an indicator of synaptic strength. Larger spine volumes are positively correlated with larger postsynaptic densities and a higher number of presynaptic vesicles¹⁵³. Moreover, targeted potentiation of a single spine by glutamate uncaging leads to structural enlargement, which is accompanied by the recruitment of AMPA receptors and increased excitatory postsynaptic currents^{[168](#page-13-6)}. Finally, spine head volume is shown to correlate strongly with postsynaptic density area, which directly relates to the amplitude of postsynaptic potential 169 . These results show the tight relationship between spine size and function and stability^{[2](#page-10-4)}. Other morphological parameters could have biological implications too, such as the length of the spine neck protrusion, which is expected to affect the compartmentalization of the biochemical signals $162,163$ $162,163$.

psilocybin studies^{9,[10](#page-10-10)}. By contrast, allopregnanolone⁷⁴ and cocaine⁷⁵ also cause the spine density to rise, but the change is more gradual, weaker (increase of ~5%), and occurs after repeated administration. For diazepam[74,](#page-11-42) 1 week of daily exposure robustly reduces the spine number density, an effect that lasted for 2 months. No detectable change was observed after chronic administration of zolpidem⁷⁴.

Timing and dose

One theme that emerges through the comparison is that although drug-evoked changes in spine density can last for days and up to weeks, the initial shift in the dynamic turnover rates of spines is transient. Compounds with putative rapid-acting antidepressant action (ketamine, psilocybin and 5-MeO-DMT) heighten the rate of spine formation for 1–3 days after single-dose administration^{5,[9](#page-10-9)[,10](#page-10-10)}. For ketamine, the speed of spine growth has been finely mapped by two studies, which show that higher spine density could be observed at 12 h post-injection, but not earlier 8.91 . Even for other chronically administered psychoactive drugs, spine remodelling kinetics are quick and restricted to the few days after treatment onset. This is true for Δ^9 -tetrahydrocannabinol (known as THC), which shows the highest spine gains on day 1 and day 3 despite a 12-day course of administration⁸⁰, and is also true for cocaine, in which spine rearrangement is seen within hours after the first injection^{[75](#page-11-44),92}. Likewise, a next-day increase in spine formation in vivo is reported for haloperidol (an antipsychotic that is a D_2 receptor antagonist⁷⁷), 2,5-dimethoxy-4-iodoamphetamine^{[11](#page-10-11)} (known as DOI, a substituted amphetamine that is also a phenethylamine psychedelic) and tabernanthalog $11,12$ $11,12$ (known as TBG, a novel serotonergic agonist derived from ibogaine).

Dose is probably a major factor in determining the kinetics and effect size of the drug-evoked structural plasticity, but unfortunately

it is often not tested in in vivo imaging studies. For diazepam, a high sedative dose at 5 mg kg⁻¹ leads to an immediate loss of spines, whereas a lower anxiolytic dose at 1 mg kg^{-1} has similar but blunted effects⁷⁴. The length of administration matters: 4 weeks of a high dose of diazepam is associated with a more long-term decrease in spine density than the same dose applied for 1 week. Another example is ketamine, in which four studies from four different laboratories have investigated the effects of an antidepressant dose at 10 mg kg−1, either via a single injection^{5,[7](#page-10-27)[,8](#page-10-8)} or sub-chronic administration for 2-7 days (refs. [6](#page-10-28),[7\)](#page-10-27). All studies report a subsequently increased number of cortical dendritic spines. However, when ketamine was tested at a much higher anaesthetic dose (85 mg kg−1) and in conjunction with xylazine, the drug only transiently promoted the formation of filopodia for 1–4 h and had no lasting effect on the dendritic architecture^{[78](#page-11-55)}. Furthermore, without testing a range of doses or including another drug as a positive control, it is not easy to interpret a null result. For example, one study reported no effect in the visual cortex following 4 weeks of treatment with the antidepressant drug fluoxetine^{[76](#page-11-56)}, but perhaps a higher dose would produce a different result.

Wiring or weight changes?

When a new spine is formed, it could arise from de novo spinogenesis or from the conversion of an electrically 'silent synapse' (Fig. [3](#page-7-1)). During de novo spinogenesis, spine outgrowth occurs at a dendritic location previously lacking synaptic material. This type of glutamate-evoked sprouting can involve the initial growth of a small protrusion^{[93](#page-12-4)} that grad-ually increases in volume with maturation^{[94](#page-12-5),95}. Ketamine has been shown to enhance such glutamate-evoked spinogenesis⁹¹. The possibility of

c

Longitudinal imaging (7 sessions spanning 38 days)

Fig. 1 | Imaging dendritic spines in vivo. a, In animals, such as mice, visualizing and tracking dendritic spines in an intact brain was made possible by multiphoton microscopy^{[157](#page-13-8)}. The approach begins with cranial window surgery involving either thinning the skull^{[158](#page-13-9)} or removing a bone flap and putting on a 1–10 mm² glass cover¹¹⁶. The cranial window is essential for optical transmission into the brain. To visualize dendrites at subcellular resolution, mice are typically anaesthetized with the head fixed in a two-photon microscope. Neurons express fluorescent proteins, which are introduced using viruses or by generating transgenic animals. **b**, Cartoon representations of in vivo images obtained from focal planes at the apical tuft of a deep-lying pyramidal neuron. Subcellular resolution imaging enables visualization of dendritic segments including dendritic spines (blue arrowheads), axons and filopodia (red arrowhead). If only a small protrusion is observed, the presence of a spine can be confirmed

by checking adjacent images at different depths. Dendritic spines are small structures that protrude off the shaft of a dendrite, with a typical length of <2 μm and a stalk as narrow as $0.1 \mu m$ (ref. [159\)](#page-13-10). Spine morphology varies widely, ranging from slender filaments to mushroom shapes^{[1](#page-10-3)}. Spine number density, spine head width, or spine brightness (as a proxy of spine volume) can be measured from the images. Thick-tufted layer 5 pyramidal neurons have been estimated to have ~15,000 spines distributed across the apical, oblique and basal compartments of the dendritic tree^{[160](#page-13-11)}. The mouse neocortex has an average of 10 –15 spines per 10 μm of dendrite 153 , although the number differs depending on cell type and dendritic location^{[161](#page-13-12)}. **c**, Dendritic spines in the same field of view can be tracked across multiple sessions over weeks. Here, the same field has been tracked in seven sessions over 38 days; persisting stable spines and new spines can be measured. Part **c** is reprinted with permission from ref. [9,](#page-10-9) Elsevier.

Box 2 | Longitudinal imaging of dendritic spines in the neocortex of living animals

When imaging dendritic spines, expression of fluorescent proteins in a sparse number of neurons is highly desirable to prevent fluorescent dendrites from overlapping and obscuring each other in the images. As such, many studies rely on *Thy*^{1GFP} and *Thy*^{1YFP} mouse strains, which have stable and bright fluorescent protein expression in a sparse subset of neurons¹⁷⁰. Standard two-photon microscopy ofers a spatial resolution of ~0.2 μm laterally and -1.5 µm axially¹⁷¹, which is sufficient to visualize dendritic spines, especially those that lie parallel to the focal plane. However, axially oriented spines or thin filopodia can be missed, and small features such as spine neck width cannot be resolved. Nevertheless, spine number density can be quantified from the images on the basis of morphological criteria^{[116](#page-12-7)}. Spine size can be estimated on the basis of structural parameters such as spine head width^{9,[74](#page-11-42)}, although some studies indicate that spine brightness might result in more accurate quantification^{94[,102](#page-12-13)}. Some studies classified spines into subtypes (for example, mushroom, stubby and thin)^{[1](#page-10-3)}, although other ultrastructural analyses suggest that sizes and shapes lie on a continuum rather than being distinct subtypes^{172}. Imaging can be repeated for the same field of view; therefore, visualizing longitudinal changes of dendritic

de novo spine formation in response to ketamine is exciting because it suggests that the drug might increase the number of potential synaptic partners for a given dendritic segment. The prospect for a cell to form synapses with previously unconnected partners confers a high degree of flexibility to the wiring of cortical circuits^{[96](#page-12-8)}.

Alternatively, new spines could be attributed to the conversion of silent synapses to active synapses. Silent synapses contain NMDAR and are electrically silent⁹⁷, but they recruit AMPA receptors upon synaptic activation⁹⁸ (Fig. [3\)](#page-7-1). Although silent synapses resemble filopodia and are, thus, easily missed by in vivo two-photon microscopy, most of them have functional presynaptic partners^{[99](#page-12-3)}. Therefore, unlike de novo spinogenesis, the wiring for silent synapses has already been laid out, but the connections are dormant. An intriguing idea is that the spine loss observed in depression might not be elimination but rather the conversion of functional synapses into silent synapses, which could then be reactivated by rapid-acting antidepressants. This scenario could explain why several studies in mice have reported that new spines induced by ketamine^{[7](#page-10-27)[,8](#page-10-8)} or serotonergic agonists¹² preferentially form at locations where spines were recently eliminated.

Empirically, psychoactive drugs might affect both spine number density and spine size, but the changes could occur in different directions or over different time courses. Following a single dose of psilocybin in mice, both spine number density and spine head width significantly increase⁹, whereas diazepam induces significant decreases in these parameters on a similar timescale⁷⁴. By contrast, a single dose of 5-MeO-DMT rapidly elevates spine number but has a minimal effect on the spine size¹⁰. Of note, after psilocybin treatment, the initial coordinated elevations in spine number and size diverge over time, with spine density remaining enhanced and spine size returning to baseline after a month⁹. However, it should be noted that measurements of spine size might be imprecise owing to methodological limitations (Box [2\)](#page-5-0). Notwithstanding this caveat, an intriguing prospect is that spine number and spine size reflect different forms of synaptic plasticity. This idea is supported by attempts to causally induce structural plasticity.

architecture in a live animal over an extended period across days and up to several months is feasible.

The number of dendritic spines in the brain is maintained through a balance of the formation of new spines and the elimination of existing spines. Using the longitudinal imaging approach, pioneering studies have investigated the baseline levels of dendritic spine turnover in layer 5 pyramidal neurons in the neocortex of adult mice. One study indicates that dendritic spines are mostly stable, with only ~4% of them turning over each month, suggesting that many spines persist through the lifetime of a rodent^{[173](#page-13-16)}. By contrast, another study shows a more dynamic picture, observing that ~20% of dendritic spines have lifetimes of <1 day and ~60% have lifetimes of >8 days, with an estimated mean lifetime of 4 months for the enduring spines²⁵. The discrepancy could be due to distinct stable and transient subpopulations of dendritic spines intermixed along cortical dendrites¹⁷⁴. Moreover, the spine turnover rate can vary for diferent brain regions; for example, the mean lifetime reported for hippocampal dendritic spines is as short as 1–2 weeks (ref. [175\)](#page-13-18). Overall, these results demonstrate that the structural plasticity of dendritic spines is a process not limited to development but that continues in adulthood.

Two-photon glutamate uncaging can be used to study the targeted stimulation of individual dendritic spines. Applying a spike-timingdependent glutamate uncaging protocol to single spines in mouse brain slices was sufficient to convert silent synapses to functional synapses, but the same protocol was ineffective at enlarging existing spines⁹⁹. This finding suggests that different plasticity processes are responsible for spine formation versus enlargement (Box [4](#page-8-0)), which could reflect different mechanisms of drug action.

Persistent integration of newly formed dendritic spines

A striking finding in antidepressant-evoked structural plasticity is the sustained increase in dendritic spine density. The extended time course of the circuit rewiring seen in mouse models is reminiscent of the durable therapeutic effects reported in clinical trials. It is tantalizing to think that the clinical outcomes of psilocybin and ketamine treatments could reflect their different effects on spine persistence in preclinical studies. The more long-term effects of psilocybin on dendritic spine density correspond with its ability to provide more sustained relief from depressive symptoms compared with ketamine (Fig. [2\)](#page-6-0). However, the reason behind this persistence of dendritic spines is poorly understood.

Prevailing frameworks of antidepressant drug action have mostly focused on how synaptic connections can be potentiated^{17[,100](#page-12-11)}. although the theory of a homoeostatic plasticity basis for drug action could speak also to maintenance and stability¹⁰¹. In general, some dendritic spines are ephemeral, disappearing within several days after formation, whereas others can remain for months¹⁰². Moreover, larger dendritic spines are known to be more persistent than smaller ones^{[102,](#page-12-13)[103](#page-12-14)}. A drug might selectively favour the growth of larger and more persistent spines. For psilocybin, ~50% and 35% of the newly formed spines induced by drug administration in mice survive for 7 and 34 days, respectively^{[9](#page-10-9)}, suggesting that a sizable portion of the new connections are stabilized and maintained. These values contrast with the lower rate of persistence (~20%) for ketamine-evoked new spines after 15 days (ref. [5](#page-10-7)). As another example, diazepam seems to

Fig. 2 | Effects of different psychoactive drugs on apical dendritic spines of cortical pyramidal neurons in mice. a, Seven drugs and the putative synaptic localization of their primary target receptors and transporters, for which there are published data on their long-term effects on dendritic spines in mice. **b**, Effects of the drugs on the density of cortical dendritic spines. Data values were extracted from published studies $5,9,10,74,75$ $5,9,10,74,75$ $5,9,10,74,75$ $5,9,10,74,75$ $5,9,10,74,75$. The studies, conducted in different laboratories, all used two-photon imaging to visualize apical dendritic spines of deep-layer pyramidal neurons in the neocortex. The studies differ in the imaged brain region, which was the medial frontal cortex

for ketamine, 5-MeO-DMT, psilocybin and cocaine, and the somatosensory cortex for diazepam, zolpidem and allopregnanolone. The studies also differ in the number of drug administrations, indicated by the arrows. To plot the results on the same axes, values were extracted from published plots in pixel measurements using ImageJ and scaled relative to the *y* axis of the respective plot. Scaled drug-treated values were subtracted from scaled vehicle-treated values. All the extracted and subtracted values are provided in the Supplementary data. 5-HT, serotonin; DA, dopamine; $GABA_A$ R, $GABA_A$ receptor; NMDAR, *N*-methyl-D-aspartate receptor.

Box 3 | Methodological considerations for published preclinical studies

The published preclinical studies presented in Fig. [2](#page-6-0) have methodological differences. The effects of ketamine^{[5](#page-10-7)}, 5-MeO-DMT 10 , psilocybin^{[9](#page-10-9)} and cocaine⁷⁵ were determined by imaging apical tufts of layer 5 pyramidal neurons in the Cg1 and medial M2 regions of the mouse medial frontal cortex. By contrast, studies of the various GABA₄ positive allosteric modulators were done on the mouse somatosensory cortex; however, some results were replicated in a separate experiment that imaged the prelimbic region of the medial frontal cortex 74 . Although imaging dendritic spines in vivo across the entire brain is currently not feasible, future studies could start with a brain-wide characterization of plasticity-related changes, such as an unbiased screening of synaptic proteins or immediate early genes^{[176,](#page-13-19)177}, before focusing on specific brain regions. Dendritic spines in deep-lying brain regions can be imaged in live animals using a glass microprism⁸ or through a cannula¹⁷⁸. Moreover, the studies have used adult mice with ages ranging from 2–2.5 months for psilocybin 9 to 4–5 months for diazepam 74 . In studies that used younger mice, spine loss was reported for vehicle-treated animals^{5,[6](#page-10-28)}, which might be due to synaptic pruning from ongoing cortical development, accumulating photodamage from repeated imaging, or the degrading quality of the cranial window over time. The influence of age is an important reason to study drug efects in vivo rather than with dissociated cells in vitro, which contain immature cells reflecting embryonic stages of development.

selectively promote the loss of transient spines while sparing the more persistent, pre-existing spines⁷⁴, which might explain why its chronic use impairs learning.

Interactions between stress and dendritic plasticity

An underexplored topic is the interaction between antidepressant interventions and prior experiences that can also evoke neural adaptations. For example, whether antidepressant interventions and stress engage the same or different structural plasticity mechanisms is not currently clear. Chronic stress is a risk factor for depression in vulnerable individuals 104 , motivating a variety of preclinical models in which repeated stressors were applied to rodents. These models cannot recapitulate the complexity of depression, but they could still be useful tools for understanding biological mechanisms 105,106 105,106 105,106 105,106 .

In the rodent medial frontal cortex, chronic stress causes atrophy of apical dendritic arborizations $107,108$ $107,108$ and retraction of dendritic spines $109,110$ $109,110$ $109,110$. Studies from the past 15 years using in vivo longitudinal two-photon imaging have confirmed these structural changes, finding decreased spine density in cortical pyramidal neurons of mice following repeated restraint stress^{[7,](#page-10-27)[8](#page-10-8),111}, chronic unpredictable stress^{[12](#page-10-12),112} or chronic corticosterone treatment^{[8,](#page-10-8)113}. A heightened rate of spine elimination is a main factor underlying the stress-induced spine loss^{[111](#page-12-22)[,113](#page-12-24)}, which seems to selectively disturb specific dendritic branches and spatially clustered dendritic spines⁸. Evidence indicates that the effect of ketamine on dendritic architecture depends on prior stress exposures in mice. For example, an increase in the spine formation rate was observed when ketamine was given to mice that were stressed with repeated restraint^{[7](#page-10-27)}. However, if ketamine is applied prophylactically before restraint stress, ketamine-treated mice are protected against stress-induced spine elimination, but they no longer have additional new spines. Furthermore, in a tourde-force demonstration in mice, a single dose of ketamine specifically restored dendritic spines that were eliminated after chronic exogenous corticosterone (the key glucocorticoid hormone of the stress response in rodents) treatment^{[8](#page-10-8)}. The spinogenesis occurs after the acute action of ketamine to increase calcium influx at dendritic spines¹¹⁴ and the induction of synchronous neuronal firing^{[8](#page-10-8)} in the medial prefrontal cortex δ , which could be potential pre-requisites to the structural plasticity.

Translational opportunities

Towards an assay for drug screening

Structural plasticity in vivo could be leveraged for preclinical drug discovery, as currently few assays are available with predictive validity for psychiatric disorders¹¹⁵. There is value in pursuing a measurement that probes directly inside the brain and yields more nuanced information about drug action than other methods, such as behavioural tests and biochemical assays. Challenges in scaling up in vivo imaging-based drug

Fig. 3 | The life cycle of a dendritic spine. A functional dendritic spine with a complement of AMPA receptors (AMPAR) and *N*-methyl-D-aspartate receptors (NMDAR) can emerge through de novo formation (spinogenesis) from a location that lacks any synaptic material or conversion from an electrically 'silent synapse', which contains only NMDAR. The size of a dendritic spine can be enlarged

or shrunk continually to adjust the synaptic strength. A spine can persist for some time, ranging from days to months, before it is eventually retracted and eliminated. In addition, a potential path could exist for the back-conversion from functional dendritic spine to a silent synapse (dashed arrow).

Box 4 | Molecular factors involved in spine formation and elimination

Spine growth involves the structural expansion of spine volume and can be the result of de novo spinogenesis or enlargement of existing spines. The spine expansion process is well characterized (see the figure), especially through careful studies using two-photon glutamate uncaging for targeted stimulation of individual dendritic spines in brain slices. The general consensus on the enlargement process is a protein synthesis-independent early phase (as demonstrated by applying protein synthesis inhibitors such as anisomycin or cycloheximide and observing no impediment to initial spine enlargement 179) followed by a protein synthesis-dependent late phase¹⁷⁹. In the early phase (<60 min), actin and cofilin transiently accumulate in the spine head. From there, actin rapidly undergoes polymerization and actin modifiers are recruited, which enables major reorganization of the actin cytoskeleton to enlarge the spine head. This initial step of actin remodelling involves small GTPases downstream of CaMKII, such as H-Ras, Cdc42 and RhoA¹⁶². An early, postsynaptic release of brain-derived neurotrophic factor (BDNF) and rapid spine-specific activation of TrkB receptors also occur^{[180](#page-13-23)}.

The late phase (>60 min) involves protein synthesis including local translation in the dendrites^{[181](#page-13-24)}. For example, PSD95 is newly synthesized in response to synaptic stimulation, as shown using novel fluorescent epitope tags¹⁸². PSD95 and other scaffold proteins are recruited to the spine head, at rates that correlate with the eventual increase in spine volume. The scaffold proteins contribute to the enhanced retention of glutamatergic receptors at synapses, thereby

screening assays exist owing to low throughput, but advancements in technology and methodology could soon help overcome these limitations. One issue is the image analysis, which involves human observers segmenting regions of interest based on predetermined criteria¹¹⁶. Machine learning can automate the process to accelerate the analysis of dendritic spines $117,118$ $117,118$ $117,118$. Moreover, automating the analysis will also improve reliability because currently, different experts can annotate differently and even for the same expert tested weeks apart, intra-rater reliability remains less than ideal¹¹⁷. Another viable approach to increase throughput is to first use in vitro high-content imaging of cultured cells to perform a large-scale screen of hundreds of compounds for increased dendritic spine growth or synaptic protein expression^{69[,119,](#page-12-29)120}, which has the added advantage of potentially including human patient-derived neurons^{[121](#page-12-31)}, before selecting a few promising candidates for in vivo characterization.

A biomarker for synaptic remodelling

Although visualizing dendritic spines in vivo in non-human primates (such as marmosets and macaques) is possible $122,123$ $122,123$, ultimately animal studies are insufficient if the goal is to understand human brain function. The issue of species-specific differences in neuroanatomy is important, given the uniqueness and complexity of the human prefrontal cortex. Moreover, depressive symptoms are not only heterogeneous, but they can also have different trajectories over time. The key to resolving these unknowns will be new methods that

resulting in synaptic potentiation^{[183](#page-13-26)}. Of note, these time courses were delineated in vitro but are challenging to confirm in vivo owing to technical limitations. In vivo, newly formed spines might take longer (>1day and up to 4 days) to become functional synapses⁹⁴. For spine elimination, shrinkage and eventual retraction involve a diferent sequence of molecular signals^{[184](#page-13-27)}. Synapse formation and elimination are additionally regulated by non-neuronal cells such as astrocytes and microglia[185,](#page-13-28)[186.](#page-13-29) AMPAR, AMPA receptor; NMDAR, *N*-methyl-D-aspartate receptor. Box [4](#page-8-0) figure is adapted from ref. [187,](#page-13-30) Springer Nature Limited.

can measure synapse-level changes in the human brain while tracking the progression of depressive symptoms.

For studying synapse-level changes in humans, the most promising approach is PET imaging. Novel contrast agents, such as [11C]UCB-J or [¹⁸F]UCB-J and [¹⁸F]SynVesT-1, have micromolar affinity to synaptic vesicle glycoprotein 2A (SV2A), a synaptic vesicle protein that is expressed in presynaptic terminals throughout the brain. When applied to individuals with MDD, this imaging approach reveals that the severity of depres-sive symptoms negatively correlates with SV2A density^{[30](#page-10-2)}. Moreover, in individuals with MDD with lower SV2A density at baseline, the administration of ketamine leads to a significant increase in the SV2A signal, whereas no change is observed in healthy individuals and in individuals with MDD with no prior evidence of synapse loss¹²⁴. Another study has detected no change in synaptic signal in individuals with late-life depression (over 60 years of age) being treated with first-line antidepressant medications relative to the healthy control group¹²⁵. A caveat of SV2A imaging is that an increase in signal can be due to more synapses or stronger existing synapses, which the method cannot disambiguate. Moreover, longitudinal PET imaging across multiple sessions could be cost-prohibitive, and additional difficulties can arise that are associated with quantification of non-specific SV2A binding^{[126](#page-12-36)}. Notwithstanding the challenges, synaptic imaging in vivo in humans is gaining popularity. Similar to preclinical in vivo optical imaging, synaptic imaging in humans might soon make it possible to compare effects across drug types, as data begin to emerge for SSRIs¹²⁷ and drugs of abuse^{[128](#page-12-38)}.

Fig. 4 | Time courses of antidepressant intervention-evoked structural neural plasticity in rodents and therapeutic onset in humans. a, The timing of events after administration of rapid-acting antidepressant drugs, including the elevation in dendritic spine formation rate in the medial frontal cortex in mice (light blue) and the increase in dendritic spine density in the medial frontal cortex in mice (dark blue) as measured by laser scanning two-photon-excited fluorescence microscopy, and the therapeutic onset when a notable decrease in depressive symptoms can be detected for patients measured by Hamilton Depression Rating Scores or Montgomery–Asberg Depression Rating Scale scores with treatment-resistant depression (grey-shaded area) after one or more treatment sessions (red arrowheads). **b**, Similar to part **a** but for accelerated transcranial magnetic stimulation (TMS). The dashed lines denote hypothesized structural plasticity. All profiles are schematic but based on data from published studies (ketamine spine formation and density timing^{[5](#page-10-7)[,8](#page-10-8)}, ketamine therapeutic onset^{[20](#page-10-19)}, psilocybin spine formation and density timing^{[9](#page-10-9)}, psilocybin therapeutic onset 86 86 86 and TMS therapeutic onset 22). rTMS, repetitive TMS.

Gaps and challenges Causal link from drugs to synapses and from synapses to behaviour

Although rapid-acting antidepressant drugs promote the formation and growth of dendritic spines in animal models, whether this effect is an epiphenomenon or an essential step towards behavioural effects is not understood. An important piece of the puzzle is that the rapid onset and long duration of spine density change in mouse models coincide with the time course of improvements seen in patient depression rating scales (Fig. [4a](#page-9-0)). Importantly, other evidence suggests that drug-evoked neuronal rewiring could be relevant to behavioural outcomes. The first clue comes from a study of rats that underwent repeated restraint stress, which caused impairments in attentional set-shifting (a measure of attention and cognitive flexibility)¹²⁹. For stressed animals, the loss in dendritic material correlates significantly with the reduction in behavioural performance. A second clue is that in mice administered with cocaine, the persistence of drug-evoked new spines relates to the bias in the conditioned place preference test (a test of preference for an addictive drug)⁷⁵. The third piece of evidence, and the most direct proof so far, comes from experiments involving causal perturbation. Newly formed spines can be selectively manipulated to shrink and collapse using a light-activated tool that disrupts cytoskeleton dynamics¹³⁰. A crucial study has shown that disrupting ketamine-evoked new spines blocks the ability of the drug to alleviate motivated escape behaviour in mice^{[8](#page-10-8)}. Intriguingly, the manipulation affects specifically the sustained behavioural responses, but not the acute action, suggesting that ketamine-induced spine formation is more relevant for the long-term clinical effect of the drug. It will be essential for future studies to confirm this causal relationship for ketamine and to further test the link with other antidepressant interventions. Assuming the new excitatory synapses are essential for antidepressant action, questions on what exactly are the downstream mechanisms that enable the new spines to drive behavioural changes remain open.

Towards reverse translation of TMS

Although studies have used in vivo structural plasticity to study antidepressant drugs, a clear opportunity exists here to apply the same approach to understand other interventional psychiatry treatments (Fig. [4b\)](#page-9-0). Consider TMS: in preclinical studies, a single pulse leads to a short-lived and localized increase in spiking activity and then suppression over ~100 ms (refs. [131](#page-12-41),[132\)](#page-12-42). By contrast, high-frequency repetitive TMS favours excitation and subsequent long-term potentiation of the evoked activity^{[131](#page-12-41)}. The consequences on dendrites are interesting to consider. One study shows that a single pulse of TMS reduces sensory-evoked calcium signals in rodent cortical dendrites¹³³. The inhibitory effect could arise from the depth dependence of TMS, as dendrite-targeting GABAergic cells in layer 1 are strongly activated, whereas the pyramidal cell bodies in layer 5 are far from the coil and, therefore, not driven¹³³. Evidence from preclinical studies in mice now suggests that repetitive TMS could evoke the remodelling of dendritic spines in vivo 134 : however, the effect of clinically relevant high-dose TMS protocols (such as intermittent theta-burst stimulation) on structural neural plasticity remains to be determined. A challenge for reverse translation of repetitive TMS is the vast difference in brain geometry between animals used in preclinical studies and humans. The spatial extent of the magnetic field stimulation should match the brain targets such that the coils used for TMS in humans need to be miniaturized for preclinical experiments.

Which circuits and cell types?

At face value, given the excitatory synaptic deficits in the prefrontal cortex associated with MDD, it seems that the formation of new dendritic spines evoked by rapid-acting antidepressant drugs should be beneficial. However, this view is overly simplistic because not all synapses are equal. The function of synapses in neural circuits crucially depends on the source of the presynaptic input, the subcellular location in the postsynaptic cell and the postsynaptic cell type in different brain regions. Although our discussion focuses on dendritic spines in the frontal cortex, the pathophysiology of depression involves a broad neural circuitry. In humans with depression, maladaptive plasticity and abnormalities are observed in the frontoparietal network, default mode network, salience network and the limbic system^{[53,](#page-11-22)[135](#page-12-45),136}. Increasing evidence also indicates that subcortical structures, such as the amygdala, nucleus accumbens, ventral tegmental area and dorsal raphe, have crucial roles in mediating the diverse symptoms of depression 137 . Preclinical research suggests

there are region-specific differences in the pathophysiology. Although chronic stress causes excitatory synaptic deficits and dendritic spine loss in the rodent medial frontal cortex^{[109](#page-12-20),138}, opposing effects have been observed in the amygdala^{139,140} and lateral habenula^{[141](#page-12-51),[142](#page-12-52)}.

Structural changes have different implications depending on the connectivity of a brain region with the broad neural circuitry; therefore, increased dendritic spine density and spine size should not be interpreted as blanket beneficial attributes. A more probable scenario is that not all new spines are equally important; instead, those that strengthen specific circuit pathways might be particularly crucial for behavioural effects. Future studies should examine how structural plasticity can be modified in a circuit-specific manner by stress^{[143](#page-12-53)} and drugs^{[144](#page-12-54),[145](#page-12-55)}. Dual-colour imaging could be used to visualize dendritic spines while, at the same time, identifying the source of presynaptic input 146 . Drug-evoked changes in the distribution of synaptic partners could be systematically assessed across the whole animal brain during monosynaptic anterograde and retrograde viral tracing methods^{147,148}. It will be crucial to understand the specific circuit pathways that are targeted by the drug-evoked structural plasticity.

Even within the frontal cortex, the excitatory pyramidal neurons are not a homogeneous population, but they instead consist of subtypes that differ by their projection targets and laminar position $149,150$. Most studies of drug-evoked turnover of dendritic spines rely on transgenic mice that preferentially express fluorescent proteins in the pyramidal tract subtype of pyramidal neurons in layer 5 of the neocortex^{[150](#page-12-60),151}, but other neuronal subpopulations could also contribute to antidepressant drug action, such as layer 2/3 pyramidal neurons^{28,104}. This limitation could be rectified by using newer methods that enable genetic access to other excitatory cell types in mice, such as viruses with cloned-in cell-specific enhancers¹⁵². Moreover, pyramidal neurons are embedded within cortical microcircuits, with extensive connections to local GABAergic inhibitory interneurons. Although most synaptic inputs onto dendrites are excitatory, with an estimated excitatory-to-inhibitory input ratio of 20:1 (ref. [153](#page-12-2)), the few inhibitory connections can powerfully modulate dendritic excitability $154,155$ $154,155$. Therefore, inhibitory connections are postulated to have essential roles in regulating drug-evoked plasticity¹⁰⁰. Inhibitory synapses are plastic like their excitatory counterparts¹⁵⁶. The extent to which inhibitory plasticity might contribute to drug action is unknown.

Conclusions

Dendritic spines are the sites for excitatory synaptic connections in cortical pyramidal neurons. Evidence indicates that excitatory synaptic deficits occur in depression. Over the past decade, in vivo longitudinal imaging studies have begun to reveal how drugs with established or putative rapid-acting antidepressant effects in humans, including ketamine, psilocybin and other psychedelic analogues, alter the turnover dynamics and morphology of dendritic spines in the mouse frontal cortex. Different forms of structural remodelling can be measured, such as spine number density, spine size, turnover rates and persistence, with each providing different insights into the underlying biological changes. The future presents exciting opportunities and hurdles for using neuronal rewiring for drug development and reverse translation to understand other antidepressant treatment options with rapid therapeutic onset. For these reasons, in vivo structural plasticity could provide crucial information on the mechanism of action underlying the therapeutic effects of antidepressant interventions.

Published online: 18 November 2024

References

- 1. DeFelipe, J. & Farinas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. *Prog. Neurobiol.* **39**, 563–607 (1992).
- 2. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stabilityfunction relationships of dendritic spines. *Trends Neurosci.* **26**, 360–368 (2003).
- Luscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. *Neuron* **69**, 650–663 (2011).
- 4. Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. *Neuropharmacology* **47**, 33–46 (2004).
- 5. Phoumthipphavong, V., Barthas, F., Hassett, S. & Kwan, A. C. Longitudinal efects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. *eNeuro* **3**, ENEURO.0133-0115.2016 (2016).
- 6. Pryazhnikov, E. et al. Longitudinal two-photon imaging in somatosensory cortex of behaving mice reveals dendritic spine formation enhancement by subchronic administration of low-dose ketamine. *Sci. Rep.* **8**, 6464 (2018).
- Ng, L. H. L. et al. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. *Transl. Psychiatry* **8**, 272 (2018).
- 8. Moda-Sava, R. N. et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. *Science* **364**, eaat8078 (2019). **This study demonstrates that ketamine restores dendritic spines eliminated owing to chronic corticosterone treatment and that disrupting ketamine-induced new spines blocks the ability of the drug to alleviate motivated escape behaviour in mice.**
- 9. Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. *Neuron* **109**, 2535–2544.e4 (2021). **This work demonstrates in vivo that a single dose of the classic psychedelic psilocybin has rapid and long-lasting efects on structural neural plasticity in the mouse medial frontal cortex.**
- 10. Jeferson, S. J. et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. *Neuropsychopharmacology* **48**, 1257–1266 (2023).
- 11. Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. *Nature* **589**, 474–479 (2021).
- 12. Lu, J. et al. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. *Mol. Psychiatry* **26**, 6237–6252 (2021).
- 13. Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. & Duman, R. S. Ketamine: a paradigm shift for depression research and treatment. *Neuron* **101**, 774–778 (2019).
- 14. Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. *Nat. Rev. Neurosci.* **21**, 611–624 (2020).
- 15. McClure-Begley, T. D. & Roth, B. L. The promises and perils of psychedelic pharmacology for psychiatry. *Nat. Rev. Drug Discov.* **21**, 463–473 (2022).
- 16. Thompson, S. M. et al. An excitatory synapse hypothesis of depression. *Trends Neurosci.* **38**, 279-294 (2015).
- Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. *Science* **338**, 68–72 (2012).
- Ousdal, O. T. et al. The neurobiological effects of electroconvulsive therapy studied through magnetic resonance: what have we learned, and where do we go? *Biol. Psychiatry* **91**, 540–549 (2022).
- Jannati, A., Oberman, L. M., Rotenberg, A. & Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. *Neuropsychopharmacology* **48**, 191–208 (2022).
- 20. Zarate, C. A. Jr. et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. *Arch. Gen. Psychiatry* **63**, 856–864 (2006).
- 21. Husain, M. M. et al. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. *J. Clin. Psychiatry* **65**, 485–491 (2004).
- 22. Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. *Am. J. Psychiatry* **179**, 132–141 (2022).
- 23. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. *Nature* **462**, 915–919 (2009).
- 24. Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. *Nature* **462**, 920–924 (2009).
- 25. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. *Nature* **420**, 788–794 (2002).
- 26. Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. *Eur. J. Neurosci.* **11**, 1598–1604 (1999).
- 27. Oliva, H. N. P. et al. Substance use and spine density: a systematic review and meta-analysis of preclinical studies. *Mol. Psychiatry* **29**, 2873–2885 (2024).
- 28. Kang, H. J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. *Nat. Med.* **18**, 1413–1417 (2012). **This study reports synapse loss and decreased expression of synapse-function-**
- **related genes in the dorsolateral prefrontal cortex of individuals with MDD.** 29. Feyissa, A. M., Chandran, A., Stockmeier, C. A. & Karolewicz, B. Reduced levels of
- NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **33**, 70–75 (2009). 30. Holmes, S. E. et al. Low synaptic density is associated with depression severity and
- network alterations. *Nat. Commun.* **10**, 1529 (2019). **This study provides the first in vivo evidence that decreased synaptic density, measured via PET imaging with the SV2A radioligand, is linked to altered network function and depressive symptoms.**

- 31. Hasler, G. et al. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. *Arch. Gen. Psychiatry* **64**, 193–200 (2007).
- 32. Auer, D. P. et al. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. *Biol. Psychiatry* **47**, 305–313 (2000)
- 33. Yüksel, C. & Öngür, D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. *Biol. Psychiatry* **68**, 785–794 (2010).
- 34. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. *Nat. Neurosci.* **22**, 343–352 (2019).
- 35. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and metaanalysis in >1.2 million individuals highlight new therapeutic directions. *Nat. Neurosci.* **24**, 954–963 (2021).
- 36. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. *Nat. Commun.* **9**, 1470 (2018).
- 37. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *Nat. Genet.* **50**, 668–681 (2018).
- 38. Labonté, B. et al. Sex-specific transcriptional signatures in human depression. *Nat. Med.* **23**, 1102–1111 (2017).
- 39. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. *Nat. Neurosci.* **23**, 771–781 (2020).
- 40. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. & Vannier, M. W. Hippocampal atrophy in recurrent major depression. *Proc. Natl Acad. Sci. USA* **93**, 3908–3913 (1996).
- 41. Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. *Nature* **386**, 824–827 (1997).
- 42. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. *JAMA Psychiatry* **72**, 305–315 (2015).
- 43. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. *Mol. Psychiatry* **22**, 900–909 (2016).
- 44. Fried, E. I. & Kievit, R. A. The volumes of subcortical regions in depressed and healthy individuals are strikingly similar: a reinterpretation of the results by Schmaal et al. *Mol. Psychiatry* **21**, 724–725 (2015).
- 45. Rajkowska, G. et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. *Biol. Psychiatry* **45**, 1085–1098 (1999).
- 46. Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G. & Classen, J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. *J. Physiol.* **543**, 699–708 (2002).
- 47. Player, M. J. et al. Neuroplasticity in depressed individuals compared with healthy controls. *Neuropsychopharmacology* **38**, 2101–2108 (2013).
- 48. Kuhn, M. et al. State-dependent partial occlusion of cortical LTP-like plasticity in major depression. *Neuropsychopharmacology* **41**, 1521–1529 (2015).
- 49. Noda, Y. et al. Impaired neuroplasticity in the prefrontal cortex in depression indexed through paired associative stimulation. *Depress. Anxiety* **35**, 448–456 (2018).
- 50. Huang, Y.-Z. et al. Plasticity induced by non-invasive transcranial brain stimulation: a position paper. *Clin. Neurophysiol.* **128**, 2318–2329 (2017).
- 51. Yan, C.-G. et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. *Proc. Natl Acad. Sci. USA* **116**, 9078–9083 (2019).
- 52. Javaheripour, N. et al. Altered resting-state functional connectome in major depressive disorder: a mega-analysis from the PsyMRI consortium. *Transl. Psychiatry* **11**, 511 (2021).
- 53. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder. *JAMA Psychiatry* **72**, 603–611 (2015).
- 54. Brandl, F. et al. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies. *Neuropsychopharmacology* **47**, 1071–1080 (2022).
- 55. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. *Nat. Med.* **23**, 28–38 (2016).
- 56. Dunlop, K. et al. Dimensional and categorical solutions to parsing depression heterogeneity in a large single-site sample. *Biol. Psychiatry* **96**, 422–434 (2024).
- 57. Tozzi, L. et al. Personalized brain circuit scores identify clinically distinct biotypes in depression and anxiety. *Nat. Med.* **30**, 2076–2087 (2024).
- 58. Winter, N. R. et al. Quantifying deviations of brain structure and function in major depressive disorder across neuroimaging modalities. *JAMA Psychiatry* **79**, 879–888 (2022).
- 59. Siegel, J. S. et al. Psilocybin desynchronizes the human brain. *Nature* **632**, 131–138 (2024).
- 60. Lynch, C. J. et al. Frontostriatal salience network expansion in individuals in depression. *Nature* **633**, 624–633 (2024).
- 61. O'Reardon, J. P. et al. Eficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. *Biol. Psychiatry* **62**, 1208–1216 (2007).
- 62. van Rooij, S. J. H., Arulpragasam, A. R., McDonald, W. M. & Philip, N. S. Accelerated TMS moving quickly into the future of depression treatment. *Neuropsychopharmacology* **49**, 128–137 (2023).
- 63. Oliveira-Maia, A. J., Press, D. & Pascual-Leone, A. Modulation of motor cortex excitability predicts antidepressant response to prefrontal cortex repetitive transcranial magnetic stimulation. *Brain Stimul.* **10**, 787–794 (2017).
- 64. Cole, J. et al. Eficacy of adjunctive D-cycloserine to intermittent theta-burst stimulation for major depressive disorder. *JAMA Psychiatry* **79**, 1153–1161 (2022).
- 65. Abdallah, C. G. et al. The efects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. *Neuropsychopharmacology* **43**, 2154–2160 (2018).
- 66. Erchinger, V. J., Ersland, L., Aukland, S. M., Abbott, C. C. & Oltedal, L. Magnetic resonance spectroscopy in depressed subjects treated with electroconvulsive therapy — a systematic review of literature. *Front. Psychiatry* **12**, 608857 (2021).
- 67. Njau, S. et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. *J. Psychiatry Neurosci.* **42**, 6–16 (2017).
- 68. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant efects of NMDA antagonists. *Science* **329**, 959–964 (2010). **This study reveals that ketamine rapidly activates the mTOR pathway, enhancing synaptic signalling and promoting the formation and function of new spine synapses in the rat prefrontal cortex, and that blocking mTOR signalling negates the efects of ketamine.**
- 69. Ly, C. et al. Psychedelics promote structural and functional neural plasticity. *Cell Rep.* **23**, 3170–3182 (2018).

This study demonstrates that the application of a wide range of serotonergic psychedelics can cause neurite formation and spine growth in cultured cortical neurons.

- 70. de la Fuente Revenga, M. et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. *Cell Rep.* **37**, 109836 (2021).
- 71. Maynard, K. R., Hobbs, J. W., Rajpurohit, S. K. & Martinowich, K. Electroconvulsive seizures influence dendritic spine morphology and BDNF expression in a neuroendocrine model of depression. *Brain Stimul.* **11**, 856–859 (2018).
- 72. Cambiaghi, M. et al. High-frequency repetitive transcranial magnetic stimulation enhances layer II/III morphological dendritic plasticity in mouse primary motor cortex. *Behav. Brain Res.* **410**, 113352 (2021).
- 73. Vlachos, A. et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. *J. Neurosci.* **32**, 17514–17523 (2012).
- 74. Shi, Y. et al. Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). *Nat. Neurosci.* **25**, 317–329 (2022). **This study reports the efects of diazepam treatments on structural plasticity of**

dendritic spines, which could explain why long-term use of the drug leads to cognitive decline.

75. Munoz-Cuevas, F. J., Athilingam, J., Piscopo, D. & Wilbrecht, L. Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference. *Nat. Neurosci.* **16**, 1367–1369 (2013).

This work demonstrates that cocaine administration leads to an increase in the formation of new dendritic spines in the frontal cortex, which correlates with cocaine-induced conditioned place preference, suggesting that these structural changes might have a role in stimulant-related learning and drug-seeking behaviour.

- 76. Shapovalov, Y. et al. Fluoxetine modulates breast cancer metastasis to the brain in a murine model. *BMC Cancer* **14**, 598 (2014).
- 77. Bowling, H. et al. Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. *Sci. Signal.* **7**, ra4 (2014).
- 78. Yang, G., Chang, P. C., Bekker, A., Blanck, T. J. & Gan, W. B. Transient efects of anesthetics on dendritic spines and filopodia in the living mouse cortex. *Anesthesiology* **115**, 718–726 (2011)
- 79. Lai, B., Li, M., Hu, W., Li, W. & Gan, W. B. The phosphodiesterase 9 inhibitor PF-04449613 promotes dendritic spine formation and performance improvement after motor learning. *Dev. Neurobiol.* **78**, 859–872 (2018).
- 80. Komorowska-Muller, J. A. et al. Chronic low-dose Delta(9)-tetrahydrocannabinol (THC) treatment stabilizes dendritic spines in 18-month-old mice. *Sci. Rep.* **13**, 1390 (2023).
- 81. Zanos, P. et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. *Pharmacol. Rev.* **70**, 621–660 (2018).
- Popova, V. et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. *Am. J. Psychiatry* **176**, 428–438 (2019)
- 83. Nichols, D. E. Psychedelics. *Pharmacol. Rev.* **68**, 264–355 (2016).
- 84. Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. *Nat. Neurosci.* **25**, 1407–1419 (2022).
- 85. Grof, S., Goodman, L. E., Richards, W. A. & Kurland, A. LSD-assisted psychotherapy in patients with terminal cancer. *Int. Pharmacopsychiatry* **8**, 129–144 (1973).
- 86. Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. *N. Engl. J. Med.* **387**, 1637–1648 (2022).
- 87. Raison, C. L. et al. Single-dose psilocybin treatment for major depressive disorder: a randomized clinical trial. *JAMA* **330**, 843–853 (2023).
- 88. Reckweg, J. et al. A phase 1, dose-ranging study to assess safety and psychoactive efects of a vaporized 5-methoxy-N, N-dimethyltryptamine formulation (GH001) in healthy volunteers. *Front. Pharmacol.* **12**, 760671 (2021).
- 89. Reddy, D. S. Neurosteroids: endogenous role in the human brain and therapeutic potentials. *Prog. Brain Res.* **186**, 113–137 (2010).
- 90. Nestler, E. J., Hyman, S. E. & Malenka, R. C. *Molecular Neuropharmacology*: *A Foundation for Clinical Neuroscience* 2nd edn (McGraw-Hill, 2009).

- 91. Wu, M., Minkowicz, S., Dumrongprechachan, V., Hamilton, P. & Kozorovitskiy, Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. *Biol. Psychiatry* **89**, 1096–1105 (2021). **Using two-photon uncaging in mouse brain slices, this study shows that ketamine increases the likelihood for glutamate-evoked spinogenesis, which precedes the changes in dendritic spine density.**
- 92. Sequeira, M. K., Swanson, A. M., Kietzman, H. W. & Gourley, S. L. Cocaine and habit training cause dendritic spine rearrangement in the prelimbic cortex. *iScience* **26**, 106240 (2023).
- 93. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. *Science* **283**, 1923–1927 (1999).
- 94. Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. *Nat. Neurosci.* **9**, 1117–1124 (2006). **This work shows that in the barrel cortex of adult mice, new dendritic spines initially form without synapses, but if the new spines persist for more than 4 days, then they tend to develop synapses.**
- 95. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. *Nature* **441**, 979–983 (2006).
- 96. Stepanyants, A., Hof, P. R. & Chklovskii, D. B. Geometry and structural plasticity of synaptic connectivity. *Neuron* **34**, 275–288 (2002).
- 97. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. *Neuron* **15**, 427–434 (1995).
- 98. Liao, D., Scannevin, R. H. & Huganir, R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. *J. Neurosci.* **21**, 6008–6017 (2001).

This study demonstrates that spontaneous synaptic activity activates NMDAR in silent synapses, leading to the rapid (within minutes) recruitment of AMPA receptors and increased frequency of miniature excitatory postsynaptic currents.

- 99. Vardalaki, D., Chung, K. & Harnett, M. T. Filopodia are a structural substrate for silent synapses in adult neocortex. *Nature* **612**, 323–327 (2022).
- 100. Savalia, N. K., Shao, L. X. & Kwan, A. C. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. *Trends Neurosci.* **44**, 260–275 (2021).
- 101. Kavalali, E. T. & Monteggia, L. M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. *Neuron* **106**, 715–726 (2020).
- 102. Holtmaat, A. J. et al. Transient and persistent dendritic spines in the neocortex in vivo. *Neuron* **45**, 279–291 (2005).
- 103. Hill, T. C. & Zito, K. LTP-induced long-term stabilization of individual nascent dendritic spines. *J. Neurosci.* **33**, 678–686 (2013).
- 104. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Efects of stress throughout the lifespan on the brain, behaviour and cognition. *Nat. Rev. Neurosci.* **10**, 434–445 (2009).
- 105. Gyles, T. M., Nestler, E. J. & Parise, E. M. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. *Neuropsychopharmacology* **49**, 215–226 (2023).
- 106. Tanaka, M., Szabó, Á. & Vécsei, L. Preclinical modeling in depression and anxiety: current challenges and future research directions. *Adv. Clin. Exp. Med.* **32**, 505–509 (2023).
- 107. Cook, S. C. & Wellman, C. L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. *J. Neurobiol.* **60**, 236–248 (2004).
- 108. Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. *Neuroscience* **125**, 1–6 (2004).
- 109. Radley, J. J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. *Cereb. Cortex* **16**, 313–320 (2006).
- 110. Liu, R. J. & Aghajanian, G. K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. *Proc. Natl Acad. Sci. USA* **105**, 359–364 (2008).
- 111. Chen, C. C., Lu, J., Yang, R., Ding, J. B. & Zuo, Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. *Mol. Psychiatry* **23**, 1614–1625 (2018).
- 112. Dromard, Y., Arango-Lievano, M., Fontanaud, P., Tricaud, N. & Jeanneteau, F. Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress. *Neurobiol. Stress* **15**, 100402 (2021).
- 113. Liston, C. & Gan, W. B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. *Proc. Natl Acad. Sci. USA* **108**, 16074–16079 (2011).
- 114. Ali, F. et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. *Nat. Commun.* **11**, 72 (2020).
- 115. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. *Nat. Neurosci.* **13**, 1161–1169 (2010).
- 116. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. *Nat. Protoc.* **4**, 1128–1144 (2009). **This protocol details the method for creating a chronic cranial window in mice that enables long-term and high-resolution two-photon imaging of dendritic spines in the**
- **cerebral cortex.** 117. Hennig, M. H., Fernholz, M. H. P., Guggiana Nilo, D. A., Bonhoefer, T. & Kist, A. M. DeepD3,
- an open framework for automated quantification of dendritic spines. *PLoS Comput. Biol.* **20**, e1011774 (2024).
- 118. Vidaurre-Gallart, I. et al. A deep learning-based workflow for dendritic spine segmentation. *Front. Neuroanat.* **16**, 817903 (2022).
- 119. Verstraelen, P. et al. Image-based profiling of synaptic connectivity in primary neuronal cell culture. *Front. Neurosci.* **12**, 389 (2018).
- 120. Savage, J. T. et al. SynBot is an open-source image analysis software for automated quantification of synapses. *Cell Rep. Methods* **4**, 100861 (2024).
- 121. Avior, Y. et al. Depression patient-derived cortical neurons reveal potential biomarkers for antidepressant response. *Transl. Psychiatry* **11**, 201 (2021).
- 122. Sadakane, O. et al. In vivo two-photon imaging of dendritic spines in marmoset neocortex. *eNeuro* **2**, ENEURO.0019-15.2015 (2015).
- 123. Chen, M., Qi, J., Poo, M. & Yang, Y. Stability and dynamics of dendritic spines in macaque prefrontal cortex. *Natl Sci. Rev.* **9**, nwac125 (2022).
- 124. Holmes, S. E. et al. Imaging the efect of ketamine on synaptic density (SV2A) in the living brain. *Mol. Psychiatry* **27**, 2273–2281 (2022).
- 125. Vande Casteele, T. et al. Preliminary evidence for preserved synaptic density in late-life depression. *Transl. Psychiatry* **14**, 145 (2024).
- 126. Asch, R. H., Abdallah, C. G., Carson, R. E. & Esterlis, I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. *Neuropsychopharmacology* <https://doi.org/10.1038/s41386-024-01913-3>(2024).
- 127. Johansen, A. et al. Efects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial. *Mol. Psychiatry* **28**, 4272–4279 (2023).
- 128. Angarita, G. A. et al. Lower prefrontal cortical synaptic vesicle binding in cocaine use disorder: an exploratory 11C‐UCB‐J positron emission tomography study in humans. *Addiction Biol.* **27**, e13123 (2021).
- 129. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. *J. Neurosci.* **26**, 7870–7874 (2006).
- 130. Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. *Nature* **525**, 333–338 (2015).
- 131. Kozyrev, V., Eysel, U. T. & Jancke, D. Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. *Proc. Natl Acad. Sci. USA* **111**, 13553–13558 (2014).
- 132. Romero, M. C., Davare, M., Armendariz, M. & Janssen, P. Neural efects of transcranial magnetic stimulation at the single-cell level. *Nat. Commun.* **10**, 2642 (2019).
- 133. Murphy, S. C., Palmer, L. M., Nyfeler, T., Müri, R. M. & Larkum, M. E. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. *eLife* **5**, e13598 (2016).
- 134. Tang, A. D. et al. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. *Brain Stimul.* **14**, 1498–1507 (2021).
- 135. Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. *Lancet Psychiatry* **3**, 472–480 (2016).
- 136. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. *Trends Cogn. Sci.* **15**, 483–506 (2011).
- 137. Nestler, E. J. et al. Neurobiology of depression. *Neuron* **34**, 13–25 (2002).
- 138. Yuen, E. Y. et al. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. *Neuron* **73**, 962–977 (2012).
- 139. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. *J. Neurosci.* **22**, 6810–6818 (2002).
- 140. Patel, D., Anilkumar, S., Chattarji, S. & Buwalda, B. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus. *Behav. Brain Res.* **347**, 314–324 (2018).
- 141. Cerniauskas, I. et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. *Neuron* **104**, 899–915.e8 (2019).
- 142. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. *Nature* **470**, 535–539 (2011).
- 143. Shansky, R. M., Hamo, C., Hof, P. R., McEwen, B. S. & Morrison, J. H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. *Cereb. Cortex* **19**, 2479–2484 (2009).
- 144. Barrientos, C. et al. Cocaine-induced structural plasticity in input regions to distinct cell types in nucleus accumbens. *Biol. Psychiatry* **84**, 893–904 (2018).
- 145. McAvoy, K., Russo, C., Kim, S., Rankin, G. & Sahay, A. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age. *Hippocampus* **25**, 1429–1446 (2015).
- 146. Ali, F. et al. Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. *Mol. Psychiatry* **26**, 1945–1966 (2021).
- Beier, K. T. et al. Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature **549**, 345–350 (2017).
- 148. Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. *J. Neurosci.* **40**, 3250–3267 (2020).
- 149. Anastasiades, P. G. & Carter, A. G. Circuit organization of the rodent medial prefrontal cortex. *Trends Neurosci.* **44**, 550–563 (2021).
- 150. Baker, A. et al. Specialized subpopulations of deep-layer pyramidal neurons in the neocortex: bridging cellular properties to functional consequences. *J. Neurosci.* **38**, 5441–5455 (2018).
- 151. Guo, C. et al. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. *Sci. Rep.* **7**, 2846 (2017).
- 152. Graybuck, L. T. et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. *Neuron* **109**, 1449–1464.e13 (2021).
- 153. Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. *Cell* **162**, 648–661 (2015).

- 154. Chiu, C. Q. et al. Compartmentalization of GABAergic inhibition by dendritic spines. *Science* **340**, 759–762 (2013).
- 155. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at diferent cortical layers. *Nature* **398**, 338–341 (1999).
- 156. Chen, J. L. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. *Neuron* **74**, 361–373 (2012).
- 157. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. *Science* **248**, 73–76 (1990).
- 158. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J. & Gan, W. B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. *Nat. Protoc.* **5**, 201–208 (2010).
- 159. Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. *Nature* **183**, 1592–1593 (1959).
- 160. Larkman, A. U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. *J. Comp. Neurol.* **306**, 332–343 (1991).
- 161. Turner, N. L. et al. Reconstruction of neocortex: organelles, compartments, cells, circuits, and activity. *Cell* **185**, 1082–1100.e24 (2022).
- 162. Nishiyama, J. & Yasuda, R. Biochemical computation for spine structural plasticity. *Neuron* **87**, 63–75 (2015).
- 163. Koch, C. & Zador, A. The function of dendritic spines — devices subserving biochemical rather than electrical compartmentalization. *J. Neurosci.* **13**, 413–422 (1993).
- 164. Huttenlocher, P. R. Synaptic density in human frontal cortex — developmental changes and efects of aging. *Brain Res.* **163**, 195–205 (1979).
- 165. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. *Nat. Neurosci.* **14**, 285–293 (2011).
- 166. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. *Nature* **399**, 66–70 (1999).
- 167. Arellano, J. I., Espinosa, A., Fairen, A., Yuste, R. & DeFelipe, J. Non-synaptic dendritic spines in neocortex. *Neuroscience* **145**, 464–469 (2007).
- 168. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. *Nature* **429**, 761–766 (2004).
- 169. Holler, S., Kostinger, G., Martin, K. A. C., Schuhknecht, G. F. P. & Stratford, K. J. Structure and function of a neocortical synapse. *Nature* **591**, 111–116 (2021).
- 170. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. *Neuron* **28**, 41–51 (2000).
- 171. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. *Nat. Biotechnol.* **21**, 1369–1377 (2003).
- 172. Ofer, N., Berger, D. R., Kasthuri, N., Lichtman, J. W. & Yuste, R. Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies. *Dev. Neurobiol.* **81**, 746–757 (2021).
- 173. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. *Nature* **420**, 810–812 (2002).
- 174. Holtmaat, A., De Paola, V., Wilbrecht, L. & Knott, G. W. Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. *Behav. Brain Res.* **192**, 20–25 (2008).
- 175. Attardo, A., Fitzgerald, J. E. & Schnitzer, M. J. Impermanence of dendritic spines in live adult CA1 hippocampus. *Nature* **523**, 592–596 (2015).
- 176. Davoudian, P. A., Shao, L. X. & Kwan, A. C. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. *ACS Chem. Neurosci.* **14**, 468–480 (2023).

This study uses whole-brain imaging to map the efects of ketamine and psilocybin administration on c-Fos expression in mice, highlighting numerous cortical and subcortical brain regions with similar or distinct changes.

- 177. Rijsketic, D. R. et al. UNRAVELing the synergistic efects of psilocybin and environment on brain-wide immediate early gene expression in mice. *Neuropsychopharmacology* **48**, 1798–1807 (2023).
- 178. Chenani, A. et al. Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning. *Transl. Psychiatry* **12**, 381 (2022).
- 179. Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. *Neuron* **82**, 444–459 (2014).
- 180. Harward, S. C. et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. *Nature* **538**, 99–103 (2016).
- 181. Sun, C. et al. The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. *Sci. Adv.* **7**, eabj0790 (2021).
- 182. Butko, M. T. et al. Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy. *Nat. Neurosci.* **15**, 1742–1751 (2012).
- 183. Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor traficking. *Annu. Rev. Cell Dev. Biol.* **23**, 613–643 (2007).
- 184. Stein, I. S. & Zito, K. Dendritic spine elimination: molecular mechanisms and implications. *Neuroscientist* **25**, 27–47 (2019).
- 185. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. *Nature* **468**, 223–231 (2010).
- 186. Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. *PLoS Biol.* **8**, e1000527 (2010).
- 187. Duman, R. et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. *Nat. Med.* **22**, 238–249 (2016).

Acknowledgements

The authors thank N. Savalia (Yale University, New Haven, CT, USA) for the feedback and L.-X. Shao (Cornell University, Ithaca, NY, USA) for the help with making the figures. The authors acknowledge the support of National Institutes of Health (NIH) grants R01MH121848, R01MH128217 and R01MH137047 (A.C.K.), One Mind–COMPASS Rising Star Award (A.C.K.), NIH training grant T32NS041228 (C. Liao), NIH training grant T32GM152349 (A.N.D.), NIH grants MH123154, MH118451 and MH109685 (C. Liston), NIH grant DA047851 (C. Liston), and grants from One Mind, Hartwell Foundation, Rita Allen Foundation, Klingenstein-Simons Foundation Fund, Brain and Behaviour Research Foundation, Hope for Depression Research Foundation, and Pritzker Neuropsychiatric Disorders Research Consortium (C. Liston).

Author contributions

All authors researched data for the article and contributed substantially to the discussion of the content. C. Liao and A.C.K. wrote the article. All authors reviewed the manuscript before submission.

Competing interests

A.C.K. has been a scientific adviser or consultant for Boehringer Ingelheim, Empyrean Neuroscience, Freedom Biosciences, and Psylo. A.C.K. has received research support from Intra-Cellular Therapies. C. Liston has served as a scientific adviser or consultant for Brainify. AI, Compass Pathways, Delix Therapeutics, and Magnus Medical. The other authors report no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41583-024-00876-0>.

Peer review information *Nature Reviews Neuroscience* thanks Joseph Coyle, Huaye Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2024, corrected publication 2024