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Abstract
Traumatic events can lead to lifelong, inflexible adaptations in threat perception and behavior, which characterize posttrau-
matic stress disorder (PTSD). This process involves associations between sensory cues and internal states of threat and then 
generalization of the threat responses to previously neutral cues. However, most formulations neglect adaptations to threat 
that are not specific to those associations. To incorporate nonassociative responses to threat, we propose a computational 
theory of PTSD based on adaptation to the frequency of traumatic events by using a reinforcement learning momentum 
model. Recent threat prediction errors generate momentum that influences subsequent threat perception in novel contexts. 
This model fits primary data acquired from a mouse model of PTSD, in which unpredictable footshocks in one context accel-
erate threat learning in a novel context. The theory is consistent with epidemiological data that show that PTSD incidence 
increases with the number of traumatic events, as well as the disproportionate impact of early life trauma. Because the theory 
proposes that PTSD relates to the average of recent threat prediction errors rather than the strength of a specific association, 
it makes novel predictions for the treatment of PTSD.
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Introduction

Computational psychiatry seeks to define psychiatric disor-
ders in terms of fundamental algorithms for survival rather 
than only as pathological states (Bach & Dayan, 2017; 
Montague et al., 2012; Wang & Krystal, 2014). Quantita-
tive models may allow personalization of mental health 
care, insight into the nature of the disorder, or predict 

the trajectory of symptoms (Galatzer-Levy et al., 2014; 
Galatzer-Levy et al., 2017; Saxe et al., 2017). For example, 
depression has been conceived as an adaptation to periods of 
low reward availability (Eldar et al., 2016). Similarly, hallu-
cinations have been conceptualized as resulting from exces-
sive weighting of prior expectations for auditory stimuli in 
a Bayesian model (Fletcher & Frith, 2009; Powers et al., 
2017). One approach to describing a computational func-
tion of a neural system is using David Marr’s three levels of 
analysis (Marr, 2010) (Fig. 1A), which seeks to map connec-
tions between computational goals, algorithmic procedures 
to achieve them, and the neurobiological substrate underly-
ing these processes.

Posttraumatic stress disorder has a computational descrip-
tion that organizes theory and neurobiological data across 
Marr’s three levels: associative fear learning (Fig.  1B) 
(Brown et al., 2018; Homan et al., 2019; Jovanovic et al., 
2012; Ross et al., 2018; Yehuda et al., 1995). Threat learning 
models have been successfully applied to PTSD and under-
lie current conceptualizations of the disorder and treatment 
options (Foa, 2011; Levy & Schiller, 2021). PTSD is seen 
as an extreme outcome of associative fear learning, which 
in turn is a fundamental mechanism for predicting threats 
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based on previous experience (Rescorla & Wagner, 1972). 
In this model, PTSD occurs when life-threatening situations 
create potent associations between sensory reminders of the 
traumatic event and the emotional experience of fear (Levy 
& Schiller, 2021). The intensity of this association then 
motivates a person to avoid (Asmundson et al., 2004) future 
trauma cues, limits extinction of the fear memory (Izquierdo 
et al., 2006), and supports the subsequent formation of new 
fear memories via generalization and second-order condi-
tioning (Beck & Sloan, 2012). This process can be described 
mathematically, enabling learning parameters to be precisely 
measured during new associative learning in a laboratory 
setting (Wagner, 1972). The precision with which associa-
tive learning can be controlled has enabled neurobiological 
studies into circuit mechanisms in both humans and animals 
(Maddox et al., 2019).

In contrast, nonassociative learning—i.e., increases 
(sensitization) or decreases (habituation) in response 
to a repeated stimulus (Thompson & Spencer, 1966)—
is a prominent component of PTSD that lacks a formal 
algorithmic description (Fig.  1B). In humans, repeated 
traumatic events increase the probability of developing PTSD 
and may change the nature of the disorder (Almli et al., 
2013; Khoury et al., 2010). However, the computational 
and neural processes that mediate this gradual increase in 
PTSD risk with trauma burden are not well understood. Core 
PTSD symptoms, such as hyperarousal, inherently involve 
an exaggerated response to sensory cues. Importantly, these 
cues need not be associated with the traumatic event to 

trigger the response (Morgan et al., 1995) but may result 
from sensitization of neuromodulatory systems ((Kelmendi 
& Southwick, 2018), but see also (Korem et al., 2022 for 
habituation responses in PTSD). Neurobiological studies 
in animals have shown that stress enhances both innate 
defensive behaviors (Li et al., 2018) and learning about 
unrelated fear cues (Rau et al., 2005). There are conceptual 
models of how habituation and sensitization occur (Dual 
Process Theory (Groves & Thompson, 1970); Wagner-
Koniorsky Theory (Wagner, 1979)), which center the role 
of arousal in changing the response to a stimulus with 
repetition. However, these models lack the algorithmic detail 
and clear relation to survival value of Rescorla-Wagner 
and related reinforcement learning (RL) models (Sutton & 
Barto, 2018). This has limited the ability to parametrically 
manipulate and therefore understand nonassociative learning 
in PTSD patients and animal models.

These nonassociative adaptations are essential, because 
an organism must estimate the threat of violence to adapt 
to it. This process of estimation must necessarily involve 
information gathered across timescales, because threat may 
increase suddenly or over long periods (Pavluvík et al., 
2015). Longer timescale estimation of threat involves inte-
grating experience in disparate environments. To consider 
a concrete example: predator attacks are stereotyped events 
that have a significant probability of death (20% for mice 
exposed to an owl) (Ilany & Eilam, 2008). Life History The-
ory explains this by positing that stressful experiences in 
childhood provide information about organismal strategies 

Fig. 1  David Marr’s Levels of Analysis for computational neurosci-
ence as applied to PTSD. (A) Definition of the three levels of analy-
sis from reference (Eldar et al., 2016). (B) Application of those lev-
els to associative learning (left) and non-associative learning (right) 
in PTSD. (left) Associative learning is a well-characterized system 
with a clear computational goal of ethological relevance (Compu-

tational), a mathematically defined formal model (Algorithm), and 
neural circuit mechanisms (Implementation). (right) Nonassociative 
learning is less well-understood but in this study conceptualizes link-
ages between nonassociative Bayesian estimation of trauma and RL 
models
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that will be adaptive in the adult environment (Frankenhuis 
& de Weerth, 2013). Childhood traumatic experiences have 
a strong impact on adult brain structure and function, which 
influence the development of PTSD (Callaghan & Totten-
ham, 2016). Previous approaches to computational modeling 
of PTSD have focused on defining changes in associative 
learning after traumatic experience (Brown et al., 2018; 
Homan et al., 2019; Jovanovic et al., 2012; Ross et al., 2018; 
Yehuda et al., 1995). PTSD is thus framed as a consequence 
of underlying mechanisms for predicting threat based on 
previous associations. In contrast, we were interested in 
defining how PTSD arises from the combination of asso-
ciative learning and an agent’s estimation of the frequency 
of traumatic events. An agent has to estimate the statistical 
relationship between experiences of trauma based on prior 
experience, which can be considered a Bayesian process.

We conceive of that Bayesian process as linking non-
associative and associative learning in simulations and 
in model-fitting to primary mouse behavioral data in a 
model of PTSD. First, we posit an ecological role for non-
associative learning in estimating the frequency of preda-
tor attacks (or other violence) across life history. In these 
simulations, we apply a Bayesian approach to understand 
how well an ideal agent could estimate predation risk from 
its own life history and consider the relationship to early 
life stress. Second, we acquired behavioral freezing data 
in a mouse model of PTSD, which is characterized by non-
associative sensitization to threat in a new context. We 
compare this behavioral data with classical RL models and 
with a recently developed RL momentum model (Eldar 
et al., 2016; Eldar & Niv, 2015; Rutledge et al., 2014; 
Trapp et al., 2018).

Results

This study used a combination of simulation and analysis 
of primary mouse stress data in a mouse behavioral model 
to understand PTSD behavior. A Bayesian model was used 
to understand, via simulation, how an agent can estimate 
the rate of traumatic attacks over its lifetime. The mouse 
behavioral model is stress-enhanced fear learning (SEFL), 
in which unpredictable footshocks in one context lead to 
long-lasting sensitization to another weak footshock in a new 
context (Supplementary Figure 1). Reinforcement learning 
models can be used to compare learning processes and to 
integrate nonassociative learning (about the frequency of 
threat) with associative learning (about the associations 
of threat) (Eldar et al., 2016; Eldar & Niv, 2015; Rutledge 
et al., 2014; Trapp et al., 2018). Further simulations of this 
model have implications for treatment and future research 
into the neurobiology of PTSD.

PTSD as trauma rate estimation (simulation)

If the probability of death is high, then the animal will 
experience few attacks before dying (Fig. 2B). In this 
information-poor environment, the animal must maximize 
the available information in estimating the rate of such 
attacks. In order to determine how well an ideal observer 
could do under such conditions, we constructed a simple 
probabilistic model with a fixed probability of attacks pa 
and probability of dying per attack pd at each time point 
(Fig. 2A).

Even with a flat prior, pa could be estimated with a high 
degree of precision by the end of the lifetime of the ani-
mal (Fig. 2C). Variance in pa decreases progressively over 
the lifetime of the animal (Fig. 2D). In contrast, inferring 
the probability of dying on each attack (pd) with as much 
certainty (Fig. 2C; Supplementary Figure 1). This obser-
vation has an intuitive explanation; the organism knows 
it survived n attacks but not how many organisms did not 
survive. The limited estimability of pd has further implica-
tions: each attack contributes to attack rate estimate ( p̂a ) 
and therefore the behavior of the agent. However, because 
individual attacks are of less defined lethality, the organ-
ismal response to them ought to be stereotyped.

The disproportionate impact of early life stress (ELS) 
on adult behavior (Pavluvík et al., 2015) is explained by 
the Bayesian trauma rate model. We evaluated the Bayes-
ian trauma rate estimator in two scenarios with the same 
total number of traumatic events: one in which traumas 
occur early in life (ELS), and one in which they are spread 
across the lifespan (Fig. 3A). The number of attacks was 
equal in both cases. Variance in p̂adecreases with time in 
both models, as traumatic events reduce uncertainty in the 
true rate of violence (Fig. 3B). However, over the course 
of the lifespan, the ELS model shows a higher estimated 
rate of violence ( p̂a ). Thus, the increased response to ELS 
does not require specialized critical period mechanisms 
but instead arises naturally in a normative estimator of 
violence rate.

RL momentum model (behavior data 
and simulation)

In this section, we compare a recently proposed RL 
momentum model (Eldar et al., 2016; Eldar & Niv, 2015; 
Rutledge et al., 2014; Trapp et al., 2018) with a new data 
behavioral freezing behavior in a mouse PTSD model. 
Classical RL models, such as temporal difference learn-
ing (Fig. 4A), enable an organism to associate threatening 
experiences with the context in which they are experi-
enced. However, threats in one context do not influence 
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threats in another (Fig. 4A). In contrast, in the RL-momen-
tum model, traumatic events occurring close in time but 
in unrelated environments contribute to a slowly varying 
momentum term (Fig. 4B). Momentum carries informa-
tion about recent threats, allowing the agent to correctly 
assess risk in a changing environment. We determined how 
the ideal length of time for momentum to persist depends 
on how long threats persist using simulation (Fig. 4C). 
When attacks are uncorrelated in time, there is no advan-
tage to momentum and the optimal momentum learning 
rate (ν) is zero. When attacks are correlated (Fig. 4C, light 
blue), a substantial improvement in threat estimation can 
be obtained by including the momentum parameter. The 
long timescale of optimal threat adaptation offers a poten-
tial explanation for the persistence of PTSD symptoms. 
If threat momentum, rather than the specific association 

with the initial traumatic event, were the source of PTSD 
symptoms, then this would have substantial implications 
for the understanding of PTSD.

To test this idea, we induced stress in a mouse model 
of PTSD (Stress-Enhanced Fear Learning; SEFL) and 
compared the performance of temporal difference learn-
ing (RL model) and a momentum model (RL momen-
tum model) in explaining defensive behavior (Figure 5). 
In this model, mice receive unpredictable footshocks in 
one context (Context A) and then show sensitized threat 
responses to a single footshock in another context (Con-
text B) later (Figure 5A, top). The RL momentum model 
fits the observed freezing behavior (Figure 5A, bottom) 
well, showing a disproportionate freezing response to 
the single footshock in a novel context (Figure 5B-C). 
This sensitized freezing behavior can be explained by 

Fig. 2  Bayesian observer can measure the rate of traumatic attacks 
more easily than lethality. (A) Simplified doubly stochastic model of 
attacks (i.e., traumatic events). Attacks occur stochastically at each 
timepoint with a fixed probability pa. Conditional on attacks occur-
ring, agents die with probability pd. If agents survive, they estimate 
the ongoing probability of attacks according to Bayes’ rule. (B) 
Agents must estimate pa and pd in an information-poor environment. 
The number of attacks experienced by the typical agent is low, usu-
ally 3-5 during the course of a lifetime for pa = 0.2, a typical value 

for the lethality of predator attacks (Rau et al., 2005). (C) The Bayes-
ian estimator of pa and pd for a typical example sequence of attacks 
shows tight convergence for pa and nonconvergence for pd. The wider 
spread in pd is indicative of the inability of the Bayesian agent to 
estimate the lethality of attacks. (D) As the agent continues over its 
lifetime (red to blue map), the estimate of pa slowly narrows (verti-
cal lines, 95% intervals). Greater time allows the agent to accumulate 
greater evidence about the true value of pa
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the momentum term in the model, which links the threat 
prediction errors produced across contexts.

We compared Maximum Likelihood fits between the 
RL and RL momentum models (n = 18 unstressed, n = 
17 stressed mice), using the Bayes Information Criteria 
(BIC; Fig. 5D). When the momentum learning parameter 
(ν) is zero, the two models are equivalent, but the the RL 
momentum model has a greater number of parameters (4 
for RL momentum, 2 for RL model). Because the BIC 

penalizes the number of parameters, this produces model 
fits where the RL model is preferred (for unstressed mice, 
RL model was preferred in 17/18 animals). For stressed 
mice, however, the BIC strongly favored fits from the 
RL momentum model (14/17 animals). The RL momen-
tum model predicts greater freezing in a novel context in 
stressed animals than the RL model, which accounts for 
the improved predictions over the RL model. This model 
also showed improved predictions compared with an 

Fig. 3  Early life traumas have a disproportionate effect on the esti-
mated attack rate. (A) Characteristic examples of two distributions of 
attack frequencies. In the random attack model (uniform attack prob-
ability), attacks are uniformly distributed across the lifespan. In the 
early life stress model, an identical number of attacks are uniformly 
distributed across the first half of the lifespan. (B) Two Bayesian 

agents (one for early life stress, one for random attack) posterior dis-
tributions for attack rate sequentially measured across the lifespan, for 
the random and early attack models. The discrepancy between esti-
mated and true attack rate  (pa = 0.01) is greatest at the start of life 
due to a higher density of attacks in the early life stress model. Over 
the course of the lifespan, these two models converge.

Fig. 4  Reinforcement learning with momentum allows improved 
estimation of autocorrelated attack rates. (A) Single traumatic 
events occur in different environmental states (contexts), leading to 
increased associated threat according to the RL model. (B) In the 
RL momentum model, the same series of attacks produces momen-
tum which couples threat across contexts. Context C threat is due to 
momentum since the animal receives no footshocks in that state. (C) 
The momentum learning rate term of the RL momentum model ena-

bles extraction of information about fluctuating attack rates. Autore-
gressive attack rates were produced as shown in Figure 3 to produce 
10,000 simulated attack sequences (light blue, highest autoregres-
sion to dark blue, lowest autoregression). All attacks occur in a dif-
ferent context. In the absence of momentum, the agent cannot extract 
information about fluctuations in underlying attack rate. With higher 
momentum, the agent can extract information about the underlying 
attack rate fluctuations.
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Fig. 5  RL momentum fits threat behavioral data in a mouse model of 
PTSD. (A) Example mouse behavioral data across three days of in the 
stress-enhanced fear learning model of PTSD (upper), along with RL 
momentum fit to behavioral data (lower). (upper left) Freezing across 
90 minutes (red) of exposure to 15 unpredictable footshocks (black; 
1mA, 1s). (upper center) Freezing across subsequent exposure to 
1 uncued footshock in a new context. (upper right) Freezing during 
re-test in the new context (lower left) Threat according to maximum 
likelihood model fit of the RL momentum model (threat associated 
with context A – blue, context B- green) on day 1, (lower center) 

day 6, and (lower right) Day 7. Averaged freezing data across (n = 
17 stressed, n = 18 controls) on Days 6 (B) and 7 (C). (D) Model 
comparison between classic RL model and RL momentum model for 
SEFL mice (n = 17 stressed, n = 18 controls). Bayes information cri-
terion (BIC) was calculated (see Methods) for maximum likelihood 
fits of the RL model and RL momentum model for either unstressed 
animals (0 shocks on Day 1) or stressed animals (15 shocks on Day 
1). Difference in BIC between the two models is shown for individual 
animals (gray dots; black dot for example data from (A)), mean BIC 
difference per condition as bars (blue – unstressed, pink – stressed)
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application of the Bayesian model of attack rate estima-
tion (Supplementary Figure 2).

Implications for the treatment of PTSD 
(simulation)

The RL-momentum model of PTSD presents an additional 
learning mechanism by which PTSD symptoms may be 
ameliorated. In the classical RL model of PTSD, extinc-
tion learning (Fig. 6A) works to reduce PTSD by generating 
small prediction errors when the agent is reexposed to the 
traumatic context. This approach underlies evidence-based 
psychological therapies for PTSD, such as prolonged expo-
sure and cognitive reprocessing therapy. The RL momen-
tum model retains extinction of learned associations, but the 
threat prediction errors generated by extinction also generate 
negative momentum that reduces responses to novel threats 
(Fig. 6B). This model also offers a novel perspective on 
treatment failure of exposure therapy in PTSD.

Current learning-based accounts of this phenomenon 
posit that individuals may experience extinction renewal or 
extinction resistance, in which either extinction fails to occur 
or in which the extinction memory may be specific to the 
context in which it was generated (e.g., the therapy session). 
In contrast, the RL momentum proffers a simple explana-
tion: unrelated mild stressors generate threat momentum, 
which increases threat associated with the original traumatic 

context (Fig. 6C). Similarly, an implication of this model is 
that exposure to novel threats independent of the traumatic 
context could reduce threat momentum. For example, an 
agent encountering an intense innate threat (e.g., standing 
on the side of a high cliff) without injury might experience a 
strong negative prediction error, which would reduce threat 
momentum for the same reason as exposure to a cue associ-
ated to a traumatic event.

Discussion

We formulated PTSD as a learning process directed at 
estimating both the rate of trauma and the specific associa-
tions with the trauma. We combined simulations of two 
distinct models with model fitting to primary behavioral 
data. The Bayesian formulation of this problem treated 
the agent experiencing trauma as an ideal observer. We 
found that the rate of traumatic events could be esti-
mated well, but the lethality of traumatic events cannot 
be estimated even by an ideal observer. Early life trauma 
had disproportionate impact in this model even without 
specialized mechanisms for amplifying early life experi-
ence. We applied the reinforcement learning momentum 
model to PTSD and found that RL-momentum performs 
well when violence is clustered in time. The slower the 
change in trauma rate, the more momentum contributes to 
optimal learning from traumatic stress. This model also 

Fig. 6  RL momentum model offers a new perspective on mechanisms 
of extinction and symptom exacerbation in PTSD. (A) RL model: 
Two traumatic events in an initial context (context A; blue highlight) 
produce threat learning associated with that context (blue line) but no 
threat associated with a novel context (context B; green line) during 
exposure to that context (green highlights). Extinction occurs when 
exposure to the initial context A after the traumatic events causes 
threat prediction errors which decrease threat associated with context 
A (blue highlights, second and third exposures). (B) RL momentum 
model: Two traumatic events in initial context produce a momentum 

which increases threat in a novel context (green line). Reexposure to 
initial threat context (context A; blue highlights) reduces threat asso-
ciated with context A (blue line) but also reduces threat momentum 
(green line). Green dotted line shows counterfactual threat momen-
tum if no re-exposure to context A had occurred). (C) RL momentum 
model demonstrates a novel explanation for relapse during exposure 
therapy. Exposure to smaller stressors (small lines) in a novel context 
increases threat associated with context B (green line) but also, via 
the momentum term, increases threat associated with the initial trau-
matic context A (blue line)
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offers a novel conceptualization of extinction learning 
and suggests that exposure to unassociated strong threats 
could affect threat momentum. Understanding the impact 
of innate danger on threat momentum requires further 
modeling and empirical investigation, because exposure 
to innate threat could lead to positive or negative changes 
in threat momentum.

Previous formal approaches to learning in PTSD have 
focused primarily on associative mechanisms. A simple 
model of a Bayesian observer experiencing potentially lethal 
attacks provided demonstrates several features that match 
the epidemiology of PTSD. For example, the question of 
why early life experiences lead to such profound effects on 
behavior is explained as a natural outcome of estimation bias 
induced by clustered trauma in early life. These obsevations 
may explain experimental observations of sensitization to 
new threats by previous stress are often used to model PTSD 
(Li et al., 2018; Morgan et al., 1995; Rau et al., 2005). We 
show that stress sensitization of threat, a model of PTSD, is 
well fit by the RL-momentum model. However, our ability 
to precisely fit the parameters of the RL-momentum model 
is limited by the binary nature of the stress in this dataset. 
Full validation and parameter-fitting for the RL-momen-
tum model will require more precise manipulations of the 
sequence of threat prediction errors over time.

A further limitation of this study is that we did not con-
sider parameter regimes that may give rise to habituation 
(decrease in response to repeated stimuli). Both sensitiza-
tion and habituation can occur in the RL-momentum model, 
depending on chosen parameters (Eldar et al., 2016). In 
PTSD, habituation has recently been suggested as an out-
come of repeated trauma (Stevens et al., 2018) and may 
relate to the numbing symptoms in PTSD. Habituation and 
sensitization have been thought of as separate processes 
that competitively modulate responses to repeated stimuli 
(Hopper et al., 2007). PTSD can involve both numbing and 
hyperarousal emotional reactions to stimuli after traumatic 
stress (Hopper et al., 2007; Krystal, 1971; Krystal, 1978). A 
more complete model of the impact of a sequence of threat 
prediction errors on subsequent emotional responses may 
explain this apparent contradiction.

Future progress in understanding the role of nonassocia-
tive learning in PTSD may depend on measuring the neural 
substrate of threat momentum (or estimated attack rate in 
the Bayesian model). Applying David Marr’s three levels 
of analysis to nonassociative learning from threat (Fig. 1), 
we defined the computational problem (“predicting future 
threats based on a sequence of attacks”) that must be solved. 
We compared two algorithms for accomplishing this goal: 
Bayesian attack rate estimation and RL momentum (Sup-
plementary Figure 2). We find that the RL momentum model 
offers a formal mathematical approach at the implementation 
level, which explains clinical features of PTSD and behavior 

in a mouse model of PTSD. However, the implementation 
level of the RL momentum has not been identified.

Identifying PTSD with threat momentum may facilitate 
future neurobiological and translational studies of PTSD. 
Extensive work has shown that patients with PTSD have 
different learning rate parameters during fear and extinction 
learning than controls (Brown et al., 2018; Homan et al., 
2019; Jovanovic et al., 2012; Ross et al., 2018; Yehuda et al., 
1995). This study extends these findings by offering a model 
of how the sequence of threat prediction errors may generate 
other associative learning alterations in PTSD. The neuro-
biological correlates of threat momentum would be slowly 
varying summing functions of previous threat prediction 
errors, which sensitize defensive behaviors, such as neuro-
modulatory systems (Li et al., 2018) or molecular switches 
leading to persistent neural changes. Future extensions of 
this approach may link effects of arousal on learning rates 
(rather than overall threat) to averaged recent threat predic-
tion errors, similar to Pearce-Hall learning (Pearce & Hall, 
1980). Thus, the present study may facilitate future work 
linking nonassociative and associative mechanisms in PTSD. 
Such links are evident in behavioral and epidemiological 
data and have plausible biological mechanisms but have pre-
viously lacked a computational model to facilitate the design 
of future experiments.

Methods

In this study, mouse freezing behavior was induced by 
contextual fear conditioning after a stress manipulation 
that models sensitization effects of PTSD. This behavior 
was compared with predictions of reinforcement learning 
models to identify model-based descriptions of the stress-
induced effects on contextual freezing. Simulations were 
used to model longer lifetime estimation of danger in an 
agent experiencing traumatic attacks over time. These simu-
lations were then fit to the estimation of a Bayesian model 
for these attacks to better understand long lifetime estimation 
problems related to PTSD.

Animal behavior All procedures were performed in accord-
ance with the ethical guidelines of the National Institutes of 
Health and were approved by the Institutional Animal Care 
& Use Committee of Yale University. Eight- to 12-week-
old, C57Bl/6, male mice were stressed by using the Stress-
Enhanced Fear Learning model, which has been shown to 
lead to long-lasting enhancement of fear and anxiety behav-
iors in both mice and rats (Rau et al., 2005; Sillivan et al., 
2017). This model consists of 15 unpredictable footshocks 
(1 mA, 1 s) with random intershock intervals between 4 
and 8 minutes. For contextual fear experiments, a second 
context (Context B) was used on Day 6, in a separate room 
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with different ambient auditory, visual, tactile, and olfactory 
characteristics. On Day 6, a single, 1-mA, 1-s shock was 
administered after 5 minutes, and then freezing was assessed 
for 5 more minutes. On Day 7, mice were returned to Con-
text B for 10 minutes. MedAssociates boxes were used for all 
footshock experiments, and freezing was assessed as com-
plete cessation of movement other than breathing (motion 
<18 a.u.) with automated VideoFreeze software.

Bayesian attack model At each time step, threat events 
(attacks) are binomially distributed with probability of 
attack pa = 0.01 for 700 time steps (Fig. 2a). Deaths occur 
with probability pd = 0.2 contingent on an attack occurring. 
Agents that die are not included in the analysis and in any 
comparisons attack rates are equalized to isolate the effect 
of estimators. The agent’s estimate of pa and pd is derived 
from the sequence of attack observations (xt = 0, 0, 1…0) 
according to Bayes’ rule

Bayesian model fitting procedure The model is fit using a 
Markov Chain Monte Carlo sampler with a flat prior at time 
t = 0 with independent fitting performed at each time point 
for the events (attacks) up to that point. Specifically, an affine 
invariant ensemble MCMC sampler (MCMC Hammer, ref. 
(Akeret et al., 2013) toolbox for Matlab with 30 walkers was 
used to estimate the posterior for these two parameters (pa 
and pd), given the likelihood function

MCMC estimation is conducted with the ‘gwmcmc’ 
function in Matlab using the MCMC Hammer toolbox with 
‘burnin’ .3 and ‘stepsize’ 2.

Autoregressive time series Autocorrelated attack rate time 
series were generated for an AR(Montague et al., 2012) 
autoregressive process

where pa, t is the attack rate at time t, c is a constant equal to 
the correlation of successive time steps, and N(�, �) is nor-
mally distributed noise with mean μ and standard deviation 
σ. Simulations used the arima function in Matlab. A total of 
10,000 simulated lifetime attack rate time series were gener-
ated, then for each an agent’s experienced attack time series 
was generated and the MCMC Hammer estimator was then 

(1)p
(
pa, pd

||xt
)
=

p
(
x
t
|pa, pd

)
p
(
pa, pd

)

∫ p
(
x
t
pa, pd

)
dx

t

(2)

ln

((
L

(
x
t
, pa, pd

))
=
∑

attacks
ln
(
pa
(
1 − pd

))

+
∑

non−attacks
ln
(
1 − pa

)

+
∑

death
ln
(
pa ∗ pd

)

(3)pa,t = cpa,t−1 +N(0,0.1),

used to progressively estimate attack rates as above. At each 
time step, the estimator was progressively estimated to gen-
erate the available estimate for an ideal Bayesian observer 
with information available to that time.

Reinforcement learning models In temporal difference 
learning, threat at time t in context c (Tc, t) is learned from a 
sequence of unconditioned stimuli (ut) which produce pre-
diction errors according to

where α is a learning rate and γ1 is a decay rate constant. 
Eq. 4 is referred to as RL model in the Results section, and 
describes the formation of associative threat learning. The 
addition of a momentum term (Eldar et al., 2016) allows pre-
diction errors from different states to influence one another 
according to an RL momentum model

where f is a scaling constant and mt is the momentum at time 
t. This momentum term is defined by

in which the sum of decayed prediction errors across all 
contexts c = {A, B, …} with momentum decay constant γ2. 
This can lead to either oscillatory behavior or slow summa-
tion of prediction errors across states depending on γ2. Rein-
forcement learning models (RL – Eq. 4, RL with momentum 
– Eq. 5) were fit to smoothed freezing (sliding window, 15 
s) on Days 1, 6, and 7. Inputs to the model were shock times 
and threat was fit for both Context A and Context B. Param-
eters for each model were fit using maximum likelihood esti-
mation in Matlab, with threat variable rescaled to (0.1, 0.9) 
to match freezing probability. Maximum likelihood fit was 
compared by calculating the Bayes Information Criterion 
(BIC) for RL and RL with momentum models at the single 
animal level for both stressed and unstressed mice.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13415- 023- 01085-5.
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