
ARTICLE

5-MeO-DMT modifies innate behaviors and promotes structural
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Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with
short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access.
One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in
early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT,
particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and
dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is
shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic
vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the
mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not
affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of
5-MeO-DMT and highlight similarities and differences with those of psilocybin.
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INTRODUCTION
Psychedelics are emerging as a promising potential treatment for
mental illnesses [1–5]. Specifically, psilocybin-assisted psychother-
apy has been shown to be efficacious for major depression and
treatment-resistant depression in Phase 2 clinical trials [6, 7]. The
most notable outcome from these trials is the enduring nature of
the beneficial effect: after one or two dosing sessions, reduction of
depressive symptoms could still be observed after 4 weeks [7] or,
in another case, after 3 months [8]. However, psilocybin acutely
alters the states of perception and cognition for 2–3.5 h in humans
[9], and therefore dosing requires that patients be closely
supervised by medical professionals, which may be expensive
and can reduce patient access. There is growing interest in other
psychedelics and routes of administration that produce a shorter
duration of action, such as 5-methoxy-N,N-dimethyltryptamine (5-
MeO-DMT), which has a rapid onset of action – within 1 minute –
and is psychoactive for only < 20min after inhalation [10–12].
Despite the more transient action, intensities of the peak drug-
evoked psychological experience are comparable for 5-MeO-DMT
and psilocybin [13]. 5-MeO-DMT has been found to be generally
safe with few adverse effects [10, 12]. Moreover, open-label
studies suggest that the use of 5-MeO-DMT is associated with
improvements in depression and anxiety [14, 15]. Therefore, there

are preliminary but encouraging clues to suggest that 5-MeO-DMT
may be useful for treating psychiatric disorders, with an advantage
of brief acute action that is more compatible with use in the clinic.
5-MeO-DMT, a compound found naturally in the Sonoran Desert

toad, has been noted for its unusual pharmacological properties
and clinical significance (reviewed in [16, 17]). As a tryptamine
psychedelic like psilocybin, 5-MeO-DMT targets a similar set of
serotonin receptors including the 5-HT1A and 5-HT2A subtypes
[18, 19], although 5-MeO-DMT has a higher affinity preference for
5-HT1A receptors, relative to 5-HT2A, receptors than psilocybin [20].
It has been argued that this balance of 5-HT1A versus 5-HT2A
receptor agonism may be important for the effects of psychedelics
[21, 22]. Researchers have characterized the dose-response curve
for 5-MeO-DMT using head-twitch response [23, 24] and drug
discrimination assays [18], as well as demonstrated that the head-
twitch response is abolished in mice lacking the 5-HT2A receptor
[23]. A recent study showed that pharmacological blockade of
5-HT2A receptors abolishes 5-MeO-DMT’s antidepressant-like
effects in the forced swim test [25]. Early studies indicate that,
like other serotonergic psychedelics, 5-MeO-DMT reliably sup-
presses firing activity in dorsal raphe [26, 27]. There are reports
that 5-MeO-DMT may decrease anxiety-like behavior in mice [28],
enhance cell proliferation in dentate gyrus in mice [29], alter
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expression of inflammatory and LTP-associated proteins in human
brain organoids [30], and perturb prefrontal cortical activity in rats
[31]. In cultured cortical neurons, incubation with 5-MeO-DMT
increases dendritic arbor complexity, suggesting a capacity to
enhance neural plasticity [24].
Whether 5-MeO-DMT can produce long-lasting changes in

neural plasticity in vivo is not known. We focused on the medial
frontal cortex because a synaptic deficit in an analogous region is
implicated in depression [32]. Prior studies accordingly found
retraction of dendritic spines after chronic stress [33, 34] and the
fast-acting antidepressant ketamine can increase spine formation
[35, 36] and restore stress-induced spine loss [37, 38]. For
psilocybin, in a prior study [39], we showed that a single dose
increases the density of dendritic spines in the mouse medial
frontal cortex. When tracking the same spines with chronic two-
photon microscopy over time, we found that the elevated spine
density persists for 1 month, paralleling the long-lasting beha-
vioral effects reported in humans [39]. These plasticity effects are
consistent with studies in vitro [40, 41], as well in mouse
hippocampus and in pigs [42, 43] and similar studies of related
compounds [44, 45].
It is unknown whether 5-MeO-DMT has similar effects on

plasticity; given that its acute actions are shorter, its neural effects
may differ from those of psilocybin. Are the durations of acute and
long-lasting effects related, which would predict that a shorter-
acting psychedelic like 5-MeO-DMT would yield shorter-lasting
effects on neural plasticity? Alternatively, does 5-MeO-DMT evoke
comparable long-lasting effects on neuronal architecture?
To address this question, we studied the effects of 5-MeO-DMT

in mice, pairing our study on longitudinal neural plasticity with
relevant assays of innate behavior. We tested the behavioral
consequences using two assays of innate behavior: head-twitch
response and social ultrasonic vocalization (USV). The results show
that, consistent with human data, 5-MeO-DMT elicits acute
behavioral effects that are more transient than those of psilocybin.
We then measured the impact of 5-MeO-DMT on dendritic
architecture, using longitudinal in vivo two-photon microscopy.
We found that 5-MeO-DMT, like psilocybin, produces a prolonged
increase in dendritic spine density. However, unlike psilocybin, 5-
MeO-DMT did not increase the dendritic spine size. Together,
these results provide insights into the behavioral effects and
neural mechanisms underlying the action of 5-MeO-DMT, high-
lighting both similarities to and differences from psilocybin.

MATERIALS AND METHODS
Animals
Experiments were performed on males and females, except for the USV
measurements, because males vocalize substantially more than females.
Animals were randomly assigned to treatment groups. For behavioral
experiments, C57BL/6 J mice were used (Stock #000664, Jackson Labora-
tory). For imaging experiments, Thy1GFP line M mice were used (Tg(Thy1-
EGFP)MJrs/J, Stock #007788, Jackson Laboratory). Animals were group-
housed (2–5 mice per cage) in a facility with 12 h light-dark cycle (7:00 AM
– 7:00 PM for light) with ad libitum access to food and water. Experimental
procedures were approved by the Institutional Animal Care and Use
Committee at Yale University.

Drugs
Ketamine working solution (1mg/mL) was prepared by diluting a stock
solution (Ketathesia 100mg/mL, 10mL; #55853, Henry Schein) with sterile
saline (0.9% sodium chloride, Hospira). Psilocybin working solution
(0.025–0.8 mg/mL) was prepared by dissolving powder obtained from
Usona Institute’s Investigational Drug & Material Supply Program with
saline. 5-MeO-DMT was obtained from two sources. Initially, we obtained
5-MeO-DMT in freebase form (#11480, Cayman Chemical). A 7 mg/mL
stock solution was prepared by dissolving 5-MeO-DMT powder in 50 μL
ethanol followed by 950 μL saline. 5-MeO-DMT working solution (2mg/mL)
was prepared by further diluting the 7mg /mL stock solution with saline.

Freebase 5-MeO-DMT was used for the first set of longitudinal two-photon
imaging (n= 2 mice) with the appropriate vehicle control (1.4% ethanol in
saline, n= 2 mice), and for ultrasonic vocalization measurements with
psilocybin, ketamine, and saline for comparison. Later, we obtained 5-
MeO-DMT in salt form, i.e., 5-MeO-DMT succinate [46], from Usona
Institute’s Investigational Drug & Material Supply Program. In this case, a
working solution was prepared by diluting 3.08mg (equivalent to 2mg
freebase) of the powder into 1mL saline. 5-MeO-DMT succinate was used
for the second set of longitudinal two-photon imaging (n= 4 mice) with
saline as vehicle control (n= 2 mice), and for head-twitch response
measurements. We note that 5-MeO-DMT in solution, regardless of
whether made from freebase or salt, rapidly oxidizes and loses potency.
Therefore we prepared fresh solution every day for the experiments.
Ketamine working solution and psilocybin stock and working solutions
were replaced approximately every 30 days.

Head-twitch response
To detect head movement, we used magnetic ear tags. Our scheme
followed earlier work that recorded head-twitch responses using magnets
based on the same principle of electromagnetic induction [47, 48]. An ear
tag was made by affixing a neodymium magnet (N45, diameter: 3 mm
diameter, 0.5 mm thick, #D1005-10, SuperMagnetMan) to an aluminum ear
tag (La Pias #56780, Stoelting) using cyanoacrylate (Super Glue Ultra Gel
Control, #1739050, Loctite). The magnet was coated with a nitrocellulose
marker (#7056, ColorTone) and dried for 2–4 h to prevent the magnet from
irritating the mouse’s ear. The mouse was briefly anesthetized with
isofluorane and the magnetic ear tag was placed on a mouse’s ear using
the ear tag applicator (#56791 Stoelting). Each mouse received one ear tag
because signal was sufficiently strong with one tag and ears tended to get
stuck together when both received ear tags. After attaching the ear tags,
mice recovered for at least 2 days before testing. To record head-twitch
responses, the mouse was placed inside a clear plastic, open-top container
(4” x 4” x 4” height). An 820-ft-long, 30 AWG enameled copper wire was
wound around the container, with its two ends connected to a
preamplifier (PP444, Pyle) that converted current to voltage, which was
recorded via a data acquisition device (USB-6001, National Instruments)
using MATLAB on a desktop computer. Head movements induce a
changing magnetic flux within the coil loop, resulting in a voltage change
that can be measured. For each mouse, we recorded for 120min
immediately after intraperitoneal injection of drug or vehicle. We applied
a 70–110 Hz bandpass filter to the recorded signal to isolate the ~90 Hz
head-twitch from other head movements and then used a peak detection
algorithm to detect individual head-twitch events. For analysis, we
calculated total count, which is the number of head-twitch responses
detected over the entire recording, and duration, which is the full width at
half maximum with maximum defined as the peak of the head-twitch
response rate. In a subset of experiments, we simultaneously recorded the
animal using a high-speed camera setup described previously [39]. This
allowed us to compare head-twitch responses detected automatically via
magnetic ear tags versus manually via visual inspection of videos to
determine the performance of the magnetic ear tag system. The parts list,
step-by-step instructions, and software for building a magnetic ear tag
reporter setup for measuring head-twitch response are available at https://
github.com/Kwan-Lab/HTR.

Social ultrasonic vocalization (USV)
To obtain consistent social USVs in male mice, we followed a habituation
protocol described previously [49]. C57BL/6 J (Stock No. 000664) mice were
bred in-house with the resulting pups being used for experiments after
weaning and socialization. Socialization occurred from the time of weaning
until 50 days after birth and involved putting a male-female pair of juvenile
mice into a cylindrical recording chamber (6” diameter x 7” height, acrylic
exterior with rubber dampening mat) within a dark, soundproof outer box
and allowing them to interact for 2–3min. Vocalizations were recorded
using a condenser ultrasound microphone (CM16/CMPA, Avisoft Bioa-
coustics) connected to a recording interface unit (UltraSoundGate 116Hb,
Avisoft Bioacoustics). The Avisoft RECORDER software was used to
generate audio files in.wav format. Socialization took place 3 times a
week, for 3 consecutive weeks, until the male mice were vocalizing
robustly. Male mice that failed to produce loud, consistent vocalizations
over multiple consecutive sessions were removed from the study. The
remaining male mice were put through three iterations of a 4-day
vocalization protocol. On the first 3 days, male mice were injected with
saline and then placed into the recording chamber for 5 min before a
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female was added and the interaction recorded for 200 s to determine
baseline number of vocalizations. On the fourth day, a drug was injected
prior to the same recording procedure. Mice were given at least 3 days to
recover before the start of a next 4-day protocol of a different treatment.
For drug comparison, we tested 4 treatment conditions (psilocybin, 1 mg/
kg, i.p.; 5-MeO-DMT, 20mg/kg, i.p.; ketamine, 10 mg/kg, i.p.). For dose
dependence, we tested 6 treatment conditions (psilocybin; 0, 0.13, 0.25,
0.5, 1, 2 mg/kg; i.p.). A randomized block design was employed such that
each mouse would cycle through all treatment types. The wav files were
analyzed offline by an experimenter blind to condition, with vocalizations
detected and classified into subtypes using automated routines based on
machine learning algorithms using the VocalMat software [50]. Details for
the operation of VocalMat were provided in the original paper [50], though
briefly the software was explicitly designed to have no user-defined
parameters (e.g., frequency range, frequency slope, etc. that are common
for other similar software for analyzing ultrasonic vocalizations). It
converted USVs to spectrogram through Fourier transform. The spectro-
gram was treated as an image, and segmentation algorithm was applied to
identify USV candidates. Next, the USV candidates were passed through a
filter and a pre-trained convolutional neural network to classify them into
one of the 11 subtypes or noise. The subtypes were chevron, step up, up
FM, step down, two steps, short, flat, reverse chevron, multiple steps,
complex, and down FM (see Fig. 2, below). In our analysis, sounds classified
as noise were excluded from the USV counts.

Surgery
Surgery was performed following procedures in our prior study [39]. Briefly,
mice were injected with carprofen (5 mg/kg, s.c.; 024751, Henry Schein
Animal Health) and dexamethasone (3mg/kg, i.m.; 002459, Henry Schein
Animal Health) prior to surgery. Mice were anesthetized with isoflurane
(3–4% for induction and 1–1.5% for maintenance) and fixed in a
stereotaxic apparatus (David Kopf Instruments) with a water-circulating
heating pad (Stryker Corp) set to 38 °C under the body. Scalp hair was
clipped, and the scalp cleaned with betadine and ethanol. Skin and
connective tissue overlying the skull were removed using sterile
instruments. A ~3mm circular craniotomy was created above the right
medial frontal cortex (center position: + 1.5 mm anterior-posterior, AP;+
0.4 mm medial-lateral, ML; relative to bregma) using a dental drill. Artificial
cerebrospinal fluid (ACSF, containing (in mM): 135 NaCl, 5 HEPES, 5 KCl, 1.8
CaCl2, 1 MgCl2; pH 7.3) was used to irrigate the exposed dura above brain.
A two-layer glass window was made from two round 3-mm-diameter, #1
thickness glass coverslip (64–0720 (CS-3R), Warner Instruments), bonded
by UV-curing optical adhesive (NOA 61, Norland Products). The glass
window was carefully placed over the craniotomy and adhesive (Henkel
Loctite 454) was used to secure the glass window to the surrounding skull.
A stainless steel headplate was affixed on the skull using C&B Metabond
(Parkell) surrounding the glass window. Carprofen (5 mg/kg, s.c.) was given
immediately after surgery and carprofen (5 mg/kg, s.c.) and dexametha-
sone (3mg/kg, i.m.; 002459, Henry Schein Animal Health) were given on
each of the following 3 days. Mice recovered for at least 10 days after the
surgery prior to the start of imaging experiments.

Two-photon imaging
The excitation laser source was a Ti:Sapphire ultrafast femtosecond laser
(Chameleon Ultra II, Coherent), with intensity controlled by a Pockels cell
(350-80-LA-02, Conoptics) and a shutter (LS6ZM2, Uniblitz via Vincent
Associates). The beam was directed into a two-photon microscope
(Movable Objective Microscope) that included a water-immersion high-
numerical aperture objective (XLUMPLFLN, 20X/0.95 NA, Olympus).
Excitation wavelength was 920 nm and emission from 475 to 550 nm
was collected using a GaAsP photomultiplier tube (H7422-40MOD,
Hamamatsu). The laser power measured at the objective was ≤ 40mW.
The two-photon microscope was controlled by ScanImage 2019 software
(MBF Bioscience). During imaging sessions, mice were head-fixed and
anesthetized with 1–1.5% isofluorane and body temperature was
controlled using a heating pad and DC Temperature Controller (40–90-
8D, FHC) with rectal thermistor probe feedback. Imaging sessions did not
exceed 2 h. Apical tuft dendrites were imaged at 0–400 μm below the dura.
For Cg1/M2, we imaged within 0–400 μm of the midline as demarcated by
the sagittal sinus. 4–9 fields of view were collected from each mouse,
taking 10–40 μm-thick image stacks at 1 μm steps at 1024 × 1024 pixels
with 0.11 μm per pixel resolution. The same imaging parameters were used
for every imaging session. To image the same fields of view across multiple
days, we would identify and return to a landmark on the left edge of the

glass window. Each mouse was imaged on days −3, −1, 1, 3, 5, 7, and 34
relative to the day of treatment. On the day of treatment (day 0) mice were
injected with 5-MeO-DMT (20mg/kg, i.p.) or vehicle. After injection, each
mouse was returned to its home cage and visually observed for head
twitches for 10min.

Analysis of the imaging data
Two-photon imaging data was analyzed using ImageJ [51] with the
StackReg plug-in [52] for motion correction. If a protrusion extended for
> 0.4 μm from the dendritic shaft, it was counted as a dendritic spine. The
head width was measured at the widest part of the spine head using the
line segment tool. Change in spine density and spine head width across
imaging sessions was calculated as fold-change from the value measured
on the first imaging session (day −3) for that dendritic segment. Spine
formation rate was calculated as the number of new dendritic spines
formed between two consecutive imaging sessions divided by the total
number of dendritic spines seen in the first imaging session. Spine
elimination rate was calculated as the number of dendritic spines lost
between two consecutive imaging sessions divided by the total number of
dendritic spines seen in the first imaging session. The data were analyzed
by an experimenter blind to condition.

Statistics
Sample sizes were estimated based on our prior study of psilocybin [39].
GraphPad Prism 9, R, and Python [53–55] were used for statistical analyses.
For head twitch response, the number and duration of head twitches
between groups was analyzed by one-way ANOVA. For ultrasonic
vocalizations, number of vocalizations were analyzed using Wilcoxon
signed rank test. The proportions of different types of USVs were
compared using the chi-square test. For in vivo two-photon imaging,
dendritic spine scoring was performed blind to treatment and time.
Longitudinal changes in spine density, spine head width, formation and
elimination rates were analyzed using a mixed-effects model for repeated
measures with the lme4 package in R. This model was chosen due to fewer
assumptions being made about the underlying data (e.g., balanced
sampling, compound symmetry) compared with commonly used repeated
measures ANOVA. Separate mixed-effects models were created for each of
four dependent variables: fold-change in spine density, fold-change in
average spine head width, spine formation rate, and spine elimination rate.
Each model was initially run with fixed effects for treatment (5-MeO-DMT
vs. vehicle), sex (female vs. male), and time (Day 1, 3, 5, and 7) as factors,
including all second and higher-order interactions between terms. No sex
effects were observed so final statistics reported consider only treatment
and time as factors. Importantly, variation within mouse and dendrite
across days was accounted for by including random effects terms for
dendrites nested by mice. P-values were calculated by likelihood ratio tests
of the full model with the effect in question against the model without the
effect in question. Post hoc t-tests were used to contrast 5-MeO-DMT and
vehicle groups per day.

RESULTS
5-MeO-DMT elicits brief head-twitch response in mice
independent of dose
Head-twitch response is a classic assay for characterizing
psychedelics in animals [56]. The behavioral measure builds on
the finding that after systemic administration of a psychedelic, the
mice exhibit rapid side-to-side movements of the head. The ability
of a compound to elicit head twitch response in mice correlates
with its hallucinogenic potency in humans [57]. Conventionally,
head-twitch responses were measured by video recording using
an overhead high-speed camera (e.g., [39]). Recent studies have
demonstrated that a head- or ear-mounted magnet can be used,
with movements detected as electrical signals generated in a wire
coil [47, 48]. Here, we implemented a similar setup to use a
magnetic ear tag to measure head movements in C57BL/6 J mice.
We refined the approach through several design iterations to
finalize on a single magnetic ear tag made with a 3mm diameter
neodymium magnet (Fig. 1A). To assess performance, we
compared head twitches detected using automated procedures
via magnetic ear tag versus those identified manually in video
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recordings by two blinded observers. The validation data set
included 14 mice that received intraperitoneal injection of either
saline vehicle, 1 mg/kg psilocybin, 5 mg/kg 5-MeO-DMT, or 10mg/
kg 5-MeO-DMT (Fig. 1B). In total, 244 events were detected via
magnetic ear tag versus 243 events manually identified, with 234
matched events (98.7% positive predictive value). There were 3
false positives (1.27% false discovery rate) and 2 false negatives
(0.85% false negative rate). Therefore, automated detection of
head-twitch response via a magnetic ear tag is highly reliable. A
parts list and a step-by-step guide to construct the setup is
available on a public repository (see Materials and Methods).
To determine the duration of the acute action for 5-MeO-DMT,

we measured head-twitch response using magnetic ear tags for
2 h in 34 male and female C57BL/6 J mice that were split into 6
groups: 5-MeO-DMT (5, 10, 20, or 40 mg/kg; i.p.), psilocybin (1 mg/
kg; i.p.), and saline vehicle (equivalent volume; i.p.). As expected,
psilocybin and 5-MeO-DMT elicited robust head-twitch responses
(Fig. 1C). Escalating doses of 5-MeO-DMT up to the highest doses

tested led to more head-twitch responses (5 mg/kg: P= 0.2,
10mg/kg: P= 0.2, 20 mg/kg: P= 0.06, 40 mg/kg: P= 0.02, one-
way ANOVA and post hoc comparison versus saline; Fig. 1D). The
dose-dependent increase up to 40mg/kg is consistent with prior
results that evaluated doses up to 20mg/kg [23]. Intriguingly,
animal-to-animal variability was high in the total number of head-
twitch responses elicited by 5-MeO-DMT (5 mg/kg: 45 ± 18, 10mg/
kg: 38 ± 14, 20 mg/kg: 47 ± 12, 40mg/kg: 56 ± 11, mean ± SE),
relative to psilocybin (68 ± 5), echoing the varied experiences
reported for 5-MeO-DMT in human studies [10, 17], though some
variations in humans may have a genetic basis [58]. We quantified
the duration of peak head-twitch responses by calculating full-
width at half-maximum (Fig. 1E). This analysis showed that the
duration of 5-MeO-DMT’s effects was consistently brief regardless
of the dose tested (5 mg/kg: 5 ± 2min, 10 mg/kg: 3 ± 1min,
20mg/kg: 4 ± 1min, 40mg/kg: 4 ± 1min, mean ± SE; P= 0.5,
one-way ANOVA with 5-MeO-DMT dose as factor), relative to that
of psilocybin (14 ± 3min; any dose of 5-MeO-DMT vs. psilocybin:
P= 0.001 treatment effect one-way ANOVA, P= 0.002–0.03, post
hoc comparisons). Previously our lab reported the behavioral and
neural effects of 1 mg/kg psilocybin [39], therefore we wanted to
study a dose of 5-MeO-DMT that would elicit comparable total
number of head-twitches. Therefore, we chose to use 20 mg/kg of
5-MeO-DMT for subsequent studies. Overall, these results demon-
strate the brief duration of acute action of 5-MeO-DMT in mice.

5-MeO-DMT substantially reduces ultrasonic vocalization in
adult mice
To further assess the acute effect of psychedelics including 5-
MeO-DMT on behavior, we measured ultrasonic vocalizations
(USVs) produced during mating behavior between a pair of male
and female adult mice (Fig. 2A). During such encounters, the male
makes social USVs repeatedly, [49, 59]; females also vocalize, but
less frequently [60], so our recorded USVs likely came mostly from
males (Fig. 2B, C). To determine how pharmacological perturba-
tions may impact USV production, we administered saline on 3
baseline days and then the drug of interest on the subsequent test
day, recording USVs for 200 s after injection (Fig. 2D). We
compared psilocybin (1 mg/kg, i.p.), 5-MeO-DMT (20 mg/kg, i.p.),
and subanesthetic ketamine (10 mg/kg, i.p.). These doses were
selected because our prior studies showed that 1 mg/kg of
psilocybin promotes neural plasticity [39, 61], and 10mg/kg of
ketamine elevates postsynaptic calcium signaling and promotes
neural plasticity [36, 61, 62]. 20 mg/kg 5-MeO-DMT was selected
based on ability to induce a comparable total number of head
twitches to psilocybin (Fig. 1D). The different drugs were tested in
the same mice using a randomized block design with 7 days
between successive drug administration (Fig. 2E–H). We found
that psilocybin reduced the number of social USVs (−30 ± 6%,
mean ± SE; P= 2 × 10−4, Wilcoxon signed-rank test). The 5-MeO-
DMT-treated mice had an even greater decrease in social USVs
(−99.90 ± 0.03%; P= 6 × 10−5). However, these effects were not
selective for classical psychedelics, as USV production also
declined after the administration of subanesthetic ketamine
(−62 ± 8%; P= 6 × 10−5). We visually observed animal movements
at the doses utilized.
Social USVs consist of different types characterized by distinct

spectrotemporal features. In this study, USVs were detected and
classified into 11 types using automated routines based on a
machine learning approach via the VocalMat software [50]. The
analysis revealed that the drugs not only broadly reduced the
number of USVs, but also altered the mouse’s tendencies to
produce certain types of USVs. Specifically, for psilocybin, mice
favored the short USVs such as “up-FM” and “short”, at the
expense of step sounds such as “step-up” and “step-down”
(χ2= 408.5, P < 10−5, chi-square test; Fig. 2I). For 5-MeO-DMT, the
near-complete suppression of social USVs precluded a reliable
determination of the distribution (χ2= 55.3, P < 10−5; Fig. 2J).

Fig. 1 5-MeO-DMT elicits a briefer duration of head-twitch
response than psilocybin. A Schematic of a C57BL/6 J mouse with
a magnetic ear tag. B Head-twitch response counted manually from
video recordings versus automatically via the magnetic ear tag
system. R2= 0.996. C Head-twitch response as a function of time
after systemic administration of varying doses of 5-MeO-DMT, saline,
or 1 mg/kg psilocybin. D Total number of head-twitch response for
2 h period after systemic administration. E Duration of head-twitch
response, quantified by calculating the full-width half-maximum
from the time course in (C). For (B), n= 14 mice. For (C–E), n= 34
mice (3 males and 3 females for each condition, except 3 males and
1 female for saline condition).
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Ketamine produced similar effects on the proportions of USV
types to psilocybin, with increased short USV types (χ2= 1543.4,
P < 10−5; Fig. 2K). Prototypical examples of USVs classified as each
type is shown in Fig. 2L. Collectively, these results demonstrate
that psychoactive drugs including 5-MeO-DMT can modify innate
behaviors and that 5-MeO-DMT produces a profound reduction in
social USV compared with more modest effects of psilocybin and
ketamine.

5-MeO-DMT induces long-lasting increases in dendritic spine
density
To measure the effects of 5-MeO-DMT on structural neural
plasticity, we used longitudinal two-photon microscopy to track
apical dendritic spines in the cingulate/premotor (Cg1/M2) region
of the medial frontal cortex of Thy1GFP mice (line M), in which a
sparse subset of layer 5 and 6 pyramidal neurons express GFP [63]
(Fig. 3A). Imaging was performed for two sessions prior to
injection of 20 mg/kg 5-MeO-DMT or vehicle and at two-day
intervals for one week following injection, followed by one session
~1 month later for a total of 7 imaging sessions (Fig. 3B). We
visualized the same dendrites including dendritic spines across
sessions to track the number of stable, new, and eliminated spines

(Fig. 3C). A total of 870 spines were tracked across 86 dendritic
segments from 10 animals (4 females, 6 males). An experimenter
blind to treatment condition analyzed spine morphology accord-
ing to standardized procedures [64]. To determine statistical
significance of the results, we used a mixed-effects model
including treatment, sex, and time as factors as well as all
interaction terms. Variation within mouse and dendrite across
days was accounted by including random effects terms for
dendrites nested within mice. Initial analysis with the full model
did not detect any sex differences, therefore the final statistical
model included only treatment and time as factors. Spine density
was expressed as fold-change from the first imaging session.
We found that a single dose of 5-MeO-DMT leads to rapid

increase in spine density (5-MeO-DMT:+ 16 ± 3% versus vehicle:
3.6 ± 5% on Day 1, mean ± SEM), which was persistent and could
be observed for at least 1 month following injection (5-MeO-
DMT:+ 11 ± 6% versus saline: −14 ± 4% on Day 34; main
treatment effect, P= 0.05, mixed-effects model; Fig. 3D). We note
that there was a decline in spine density observed in the vehicle
group, which may due to several factors. One explanation is that a
subset of the mice was treated with freebase 5-MeO-DMT (see
Materials and Methods), for which the vehicle included ethanol

Fig. 2 Classical psychedelics and ketamine suppress the production of social ultrasonic vocalizations. A Schematic of the setup.
B, C Example recordings of USVs. D Timeline of experiment. E Number of USVs recorded on sessions before and after 1 mg/kg psilocybin
administration. Bar, mean. Line, individual animals. F Similar to (E) for 20 mg/kg 5-MeO-DMT. G Similar to (E) for 10mg/kg ketamine. H Results
in (E–G) tabulated as percent changes. Bar, mean. Circle, individual animals. I Proportions of USVs classified into the 11 types, comparing
sessions before and after 1 mg/kg psilocybin administration. Black, saline. Red, psilocybin. Data pooled from all animals by treatment
condition. J Similar to (I) for 20mg/kg 5-MeO-DMT. K Similar to (I) for 10mg/kg ketamine. L Example USV recordings for each of the 11 types,
as well as an example sound classified as noise. n= 15 mice.

S.J. Jefferson et al.

1261

Neuropsychopharmacology (2023) 48:1257 – 1266



that could have adverse effects on spine density [65]. A second
reason is that the use of high laser power can damage dendritic
segments, leading to declines in control groups that have been
also observed in other two-photon spine imaging studies [36, 66].
The ethanol and imaging conditions were matched across the two
groups and therefore any extraneous effects should not affect the
difference between the groups. We also measured the width of
the dendritic spines, because the spine size is an indicator of the
strength of the synaptic connection [67, 68]. We did not detect
any effect of 5-MeO-DMT on spine head width over time (main
treatment effect, P= 0.2, mixed-effects model; Fig. 3E). Overall,
these results demonstrate that 5-MeO-DMT leads to enduring
increase in dendritic spine density, but does not influence the
spine size in the mouse medial frontal cortex.

5-MeO-DMT elevates the formation rate of dendritic spines
Since we were tracking the same dendritic spines across days, we
could determine the turnover rates of dendritic spines. To
determine formation and elimination rates, we analyzed the same
dendritic segments from consecutive imaging sessions and

quantified the number of new spines formed or old spines
eliminated relative to the total number of spines in the first
imaging session (Fig. 4A). We found that the formation rate
increased following 5-MeO-DMT administration (5-MeO-DMT:
12 ± 1% on Day −1 and 24 ± 3% on Day 1; Saline: 7 ± 2% on Day
−1 and 11 ± 3% on Day 1, mean ± SE; main treatment effect:
P= 0.04, mixed-effects model; Fig. 4B). This elevation in spine
formation rate was transient, with post-hoc testing showing
significant elevations specific to the first and third days after 5-
MeO-DMT administration (Day 1: P= 0.007, Day 3: P= 0.006).
Elimination rate was not significantly affected by the 5-MeO-DMT
treatment (main treatment effect: P= 0.96, mixed-effects model;
Fig. 4C). Altogether, these data suggest that the prolonged increase
in spine density is driven by a transient increase in spine formation
rate in the few days following 5-MeO-DMT administration.

DISCUSSION
This study yielded two main conclusions. First, 5-MeO-DMT
modifies innate behaviors by increasing head-twitch response

Fig. 3 5-MeO-DMT increases the density of dendritic spines, but does not affect spine size, in the mouse medial frontal cortex. A Imaging
setup. B Timeline for longitudinal imaging. C Example field of view in a mouse treated with 20mg/kg 5-MeO-DMT. Scale bar, 5 μm. D Effects of
vehicle or 20mg/kg 5-MeO-DMT on spine density, plotted as fold-change relative to baseline Day −3. Mean ± SEM. E Effects of vehicle or
20mg/kg 5-MeO-DMT on spine head width, plotted as fold-change relative to baseline Day −3. Mean ± SEM. n= 6 mice for 5-MeO-DMT and 4
mice for saline.
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and suppressing social USVs. Notably, for head-twitch response,
the effect of 5-MeO-DMT is significantly briefer than that of
psilocybin at all doses tested. Second, 5-MeO-DMT induces
structural plasticity in the medial frontal cortex by evoking a
long-lasting increase in dendritic spine density, although intrigu-
ingly there is no effect on spine size.
5-MeO-DMT induces an extremely swift and brief subjective

experience in humans due to its rapid metabolism [10, 11],
although the time of onset and duration can differ depending on
the route of administration [12, 17]. Recreational use and clinical
tests typically involve smoking or inhalation of vaporized freebase,
which produces a quicker onset compared to other parenteral
routes such as intramuscular injection and intranasal administra-
tion [17], though all provide a more rapid onset compared to oral
administration of psilocybin. For mice, vapor-based administration
methods are less practical, therefore we used intraperitoneal
injections. The resulting pharmacokinetics for 5-MeO-DMT in
rodents, particularly in terms of the temporal profile of its entry
and removal from the central nervous system, remains to be
clarified. Nevertheless, behaviorally, this study confirms that when
both 5-MeO-DMT and psilocybin are administered intraperitone-
ally, the duration of acute action for 5-MeO-DMT is considerably
shorter than psilocybin at all tested doses of 5-MeO-DMT. A
previous study has shown that the head-twitch response elicited
by the administration of 5-MeO-DMT is dependent on 5-HT2A
receptor agonism [23], like psilocybin.
Given the paucity of information on how psychedelics impact

innate behavior beyond head-twitch response, we decided to also

examine the impact of various compounds on social USV. In the
presence of females, male mice spontaneously produce USVs
[49, 59], which are frequent and have quantifiable spectro-
temporal features, making this an attractive behavioral paradigm.
Moreover, studies have delineated the neural circuit involved in
vocal control, which includes premotor neurons in brainstem and
periaqueductal grey that are controlled by cortical regions
including motor cortex and medial frontal cortex [69]. The
behavioral assay is relevant because the medial frontal cortex is
the location where current and past studies have shown
psychedelic-evoked plasticity [39, 44, 45]. The periaqueductal
grey (PAG), which has been shown to be essential for social USVs
in mice [70], is impacted by serotonergic neuromodulation [71],
and by psychedelics [61]. Here we demonstrate that psilocybin
and 5-MeO-DMT robustly suppress the production of social USVs
and alter the pattern of USVs produced. Ketamine has a similar
effect. The results could be due to effects of psychedelics on
motor control of vocal production, given that 5-HT1A agonists and
NMDAR antagonists have been reported to impair distress
vocalizations in maternally separated mouse pups [72, 73].
Interestingly, the most profound effects on social USV were

seen with 5-MeO-DMT, suggesting that suppression of USV may
correlate with intensity of psychedelic effects. Human studies
utilizing 5-MeO-DMT have demonstrated significantly higher peak
intensity of mystical effects relative to moderate or high dose of
psilocybin [13]. We did not test whether higher doses of psilocybin
may produce comparable suppression of social USV to that seen
with 5-MeO-DMT. Given the different relative affinities of

Fig. 4 5-MeO-DMT increases the formation rate of dendritic spines. A Example field of view in a mouse treated with 20mg/kg 5-MeO-DMT.
Scale bar, 5 μm. B Effects of vehicle or 20mg/kg 5-MeO-DMT on spine formation rate. Mean ± SEM. C Effects of vehicle or 20mg/kg 5-MeO-
DMT on spine elimination rate. Mean ± SEM. n= 6 mice for 5-MeO-DMT and 4 mice for saline.
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psilocybin and 5-MeO-DMT for 5-HT1A and 5-HT2A receptors, one
may consider the role of these receptor subtypes in modulating
USVs. In one study, 5-HT1A receptor-deficient mouse pups
produced more distress USVs, though fewer were of the complex
subtype with maternal separation [74], raising the possibility that
5-HT1A receptors may play a role in suppression of USVs. However,
it is unknown whether USVs produced during mating behavior are
similarly modulated by 5-HT1A receptors.
It is worthwhile to compare the effects of 5-MeO-DMT and

psilocybin on structural plasticity. We intentionally designed the
current experiment to match the timeline used in our prior study
[39], in order to facilitate a direct comparison. Relative to
psilocybin, 5-MeO-DMT evokes a similar ~10–15% increase in
spine density that rises within 1 day after administration and
endures for at least 1 month. Moreover, just like psilocybin, the
increase in spine density is driven by a transient increase in spine
formation rate within the initial 1–3 days after injection. These
results suggest that the effects of a single dose of 5-MeO-DMT on
spine density in medial frontal cortex is indistinguishable from
those reported previously for psilocybin. The notable difference is
in the effects of the compounds on spine head width. Whereas
psilocybin causes a ~10% increase in spine size that sustains for
days before returning to baseline within a month, 5-MeO-DMT has
no detectable impact on spine head width. Spine size has been
shown to have a linear relationship with synapse strength [68], so
one may interpret that the average strength of synapses in the
medial frontal cortex is not affected by 5-MeO-DMT on the
timescale measured despite the overall number of dendritic
spines being increased. Interestingly, a recent study showed that
5-MeO-DMT induced sustained, but not rapid, antidepressant-like
effects in mice [25]. It is possible that enlargement of spine size is
more rapid to mediate acute behavioral effects whereas newly
formed spines require more time to become functional synapses
and may mediate the sustained behavioral effects.
The results have implications for drug discovery. There is a

concerted push in the field to develop non-hallucinogenic
psychedelic analogs [45, 75, 76]. The potential therapeutic effects
of these new chemical entities have so far been demonstrated
using behavioral assays such as forced swim, tail suspension, and
sucrose preference tests. The current study provides insight into
the question of whether duration of psychedelic effects correlates
with duration of therapeutic effects. By showing that the short-
acting 5-MeO-DMT can produce long-lasting effects on neural
structural plasticity in vivo, the results suggest that the durations
of acute and long-term effects may not be tightly linked. To
conclude, 5-MeO-DMT is a compound with increasing clinical
relevance. Further characterization of its effects, particularly in
contrast to psilocybin and other psychedelic analogs, will shed
light onto the mechanisms of action that support its therapeutic
potential for treating mental illnesses.
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