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Visual Abstract

Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensi-
tization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is
associated with increased whole-brain functional connectivity and decreased network modularity; however,
the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors
and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholin-
ergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and

Significance Statement

Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and
functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nic-
otinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associ-
ated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of
the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together
with 1751 other genes that contribute to, and could thus be targets for treatments against, nicotine with-
drawal and dependence.
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correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that
the main functional connectivity modules included the main long-range cholinergic regions, which were highly
synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two
anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting
cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems.
Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain
region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA
expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog,
JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These re-
sults identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-
brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways
that may be critical for the transition to nicotine dependence.

Key words: addiction; Fos reactivity; single-cell whole-brain imaging; stimulant

Introduction
Chronic nicotine use causes adaptive changes through-

out the brain that lead to drug dependence (Markou,
2008; Martin-Soelch, 2013; Fowler et al., 2020), the emer-
gence of a withdrawal state following cessation, and long-
lasting somatic and motivational symptoms (Le Foll and
Goldberg, 2009) that contribute to relapse (Allen et al.,
2008; Zhou et al., 2009). Brain states, like dependence
and withdrawal, have been described through patterns of
synchronous neural firing (Brown, 2006). Changes in the
patterns of neuronal coreactivity, also called the function-
al connectome, can be observed in humans and rodents
during withdrawal from nicotine (Hobkirk et al., 2018;
Cheng et al., 2019; Kimbrough et al., 2021). Whole-brain
imaging with single-cell resolution using light-sheet mi-
croscopy on cleared brains (Renier et al., 2014, 2016;
Ueda et al., 2020) has made the study of brain-wide func-
tional networks at single-cell resolution possible by look-
ing at the expression of the immediate-early gene Fos
(Wheeler et al., 2013; Vetere et al., 2017; Kimbrough et al.,
2020; 2021; Smith et al., 2021; Roland et al., 2022), a
marker of neuronal reactivity, which integrates neuronal

activation during a period of 1–2 h, an ideal temporal
window to characterize nicotine withdrawal. Using this
approach, we have found that mice in withdrawal exhibit
a pronounced increase in coactivation patterns through-
out the brain (Kimbrough et al., 2020, 2021). A healthy
control brain is modularly organized in several small, cor-
related clusters or modules consisting of brain regions
that are functionally related. The withdrawal-induced in-
crease in correlation between brain regions causes more
regions to cluster together with a significant decrease in
whole-brain modularity. Increased functional connectivity
throughout the network also results in a reduction of brain
regions identified as hubs. Hub regions are regions with
the highest intramodular and intermodular connectivity as
measured using graph theory (participation coefficient,
within-module degree). These hub regions are hypothe-
sized to be the biggest drivers of neuronal activity within
the network. For instance, during nicotine withdrawal, the
main hub regions shift from cortical (e.g., sensory, motor)
to subcortical (e.g., amygdalar, thalamic, hypothalamic,
and midbrain) regions (Kimbrough et al., 2020, 2021).
However, the role of cholinergic neurons and cholinergic
receptors in the whole-brain functional hyperconnectivity
observed during withdrawal is unknown.
Desensitization and upregulation of nicotinic acetylcho-

line receptors (nAChRs) (Benwell et al., 1988; Balfour and
Fagerström, 1996; Dani and Heinemann, 1996; Fowler et
al., 2020) contributes to the emergence of nicotine with-
drawal symptoms by altering cholinergic neurotransmis-
sion in brain regions critical to sensory processing (Gil and
Metherate, 2019), attention (Hahn, 2015), emotion, and
motivation (Leslie et al., 2013). nAChRs form pentameric
structures assembled from a family of subunits composed
of a2–a10 and b 2–b 4. a4 and b 2 are the most prevalent,
but all subunits are expressed throughout the brain. A large
number of brain regions (401) have cholinergic neurons,
characterized by the expression of choline acetyltransfer-
ase (ChAT); however, most of them are interneurons, and
only eight brain regions have long-range projecting cholin-
ergic neurons (Mesulam et al., 1983). The long-range cho-
linergic regions include Ch1 [medial septal nucleus (MS)],
Ch2 [vertical nucleus of the diagonal band (NDB)], Ch3
[horizontal limb of the NDB], Ch4 [nucleus basalis of
Meynert that consists of the magnocellular nucleus (MA)
and substantia innominata (SI)], Ch5 [pedunculopontine
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nucleus (PPN)], Ch6 [laterodorsal tegmental nucleus], Ch7
[medial habenula (MH)], and Ch8 [parabigeminal nucleus]
(Mesulam et al., 1983; Woolf, 1991). We hypothesized
that, following chronic nicotine administration, most cho-
linergic regions that are rich in nicotinic receptors would
have a synchronized correlated activity due in part to the
brain-wide upregulation of nicotinic receptors (Govind et
al., 2009; Fowler et al., 2020) and the increase in choliner-
gic transmission during nicotine withdrawal (Carcoba et
al., 2014). The increased correlation would lead to
larger modules and decreased modularity. Furthermore,
since cholinergic receptor signaling is critical for nicotine-
induced Fos activation (Pang et al., 2016; Simmons et
al., 2016), a subhypothesis was that the regional ex-
pression level of cholinergic-related genes would be
correlated to regional differential Fos expression under
withdrawal in nicotine-dependent animals.
To test these hypotheses, we reanalyzed the previ-

ously published whole-brain nicotine withdrawal network
(Kimbrough et al., 2021) focusing on the cholinergic re-
gions using hierarchical clustering and graph theory analy-
sis, and investigated the relationship between baseline
gene expression levels and Fos reactivity using the whole-
brain in situ Allen Brain expression database, which con-
tains the regional whole-brain expression of 19,413 genes
in the mouse genome (Lein et al., 2007; Davoudian et al.,
2023). Contrary to our hypothesis, we found that during
nicotine withdrawal, the cholinergic regions did not cluster
together in a single module but were instead represented
in each of the main modules and organized into two anti-
correlated networks that were separated into basal forebrain
projecting and brainstem-thalamic-projecting cholinergic re-
gions. Moreover, while mRNA expression of a few nicotinic
receptors correlated with Fos activation, we identified a list of
.1000 candidate genes and 3 intracellular pathways that
may contribute to the reorganization of the whole-brain func-
tional connectome during nicotine withdrawal.

Materials and Methods
This report includes a reanalysis of a previously ac-

quired and published dataset (Kimbrough et al., 2021)
consisting of Fos counts per brain region (175; Extended
Data Table 1-1) for two groups of male C57BL/6J mice
(60 d old at the start of the experiment), 8 h after removal
from minipumps (model 1002, Alzet) that were implanted
in the lower back to deliver nicotine (N=5, 24mg/kg/d) or
saline (N=4) for 7 d. This dose was chosen based on pre-
vious studies that indicated rewarding effects during use,
resulting in withdrawal-like symptoms after the cessation
of chronic use (Johnson et al., 2008; Stoker et al., 2012).
All brains (N=9, 5 nicotine plus 4 saline) were harvested
following perfusion (PBS, followed by 4% formaldehyde),
postfixed overnight, immunolabeled for Fos (primary: 1:2000;
catalog #226003; Synaptic Systems; and secondary: 1:500;
catalog #A31573, Thermo Fisher Scientific; donkey anti-rab-
bit Alexa Fluor 647), cleared according to the iDISCO1 proto-
col, imaged using light-sheet microscopy (effective
magnification, 1.6�; resolution, 4� 4 mm; step size,
3 mm; Ultramicroscope II, LaVision BioTec), and ana-
lyzed using the ClearMap package (Renier et al.,

2016). Three brain regions with low-to-no Fos counts
were excluded based on quality control of the original
data: the dorsal premammilary nucleus, parabigeminal
nucleus, and suprachiasmatic nucleus. These experiments
had been conducted in strict adherence to the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals, and approved by The Scripps Research Institute
Institutional Animal Care and Use Committee and by the
Institutional Animal Care and Use Committee of the
University of California. No new experimental procedures
were performed for this article. The data were processed
similarly as previously published (Kimbrough et al., 2020,
2021) using GraphPad Prism and R (code is available on-
line at https://github.com/George-LabX), as described in
more detail below.

Functional connectome construction
The Fos counts per region obtained from the published

dataset, were all increased by 1 and normalized to a log10
value to reduce variability, before calculating Pearson
correlations between regions. The matrix was then hi-
erarchically clustered, based on the Euclidean distan-
ces calculated from the correlations. Modules were
obtained by cutting the clustering dendrogram at half-
height.

Average correlation calculations
Average R values were calculated for each treatment

(saline or nicotine) within the basal forebrain cholinergic
regions (n= 3, excluding self-correlations), within the
brainstem-thalamic cholinergic regions (n= 6, excluding
self-correlations), and between both cholinergic sub-
groups (n = 12). Average R values were also calculated
per treatment for the interaction of all cholinergic regions
with the major anatomic groups in the brain. Two-way
ANOVA was then performed to examine the effect of treat-
ment condition on the average R value for each comparison.

Network analysis
Networks were analyzed for centrality (degree or be-

tweenness) with the R package iGraph. Participation
coefficients were obtained using a customized version of
the bctpy Python package (https://github.com/aestrivex/
bctpy), derived from the MATLAB implementation of
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

Analysis of expression data
Structure and gene expression data were extracted

from the In Situ Hybridization gene expression database
and Allen Brain Atlas (Lein et al., 2007) in Python, as pub-
lished and described before [AllenSDK (https://doi.org/
10.5281/zenodo.3951756); Fulcher and Fornito, 2016;
Fulcher et al., 2019; Davoudian et al., 2023] and inter-
sected with the 175 brain regions from the Fos dataset.
The expression density of all nicotinic cholinergic recep-
tors in the gene expression atlas was averaged across the
experimental sets following centering and scaling per ex-
periment. Next, the correlation of the baseline expression
level (percentage of pixels) for every gene in every
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experiment was correlated with the Fos expression
change in withdrawal compared with control (log-fold
change) per brain region for every gene. The frontal pole
cerebral cortex was excluded as an outlier.

Reactome analysis
The gene set was analyzed using the Reactome path-

way database on https://reactome.org/ by inserting the
gene set, projected to human, and analyze without inter-
actors (Joshi-Tope et al., 2005).

Statistical analysis
Statistical analysis was performed as indicated in

GraphPad Prism software or in R Studio. For comparison of
the brain states, we used two-way ANOVAwith Tukey’s cor-
rected post hoc testa,b in Prism or with Mann–Whitney U
testc-e in R with p, 0.05 (Table 1, statistics). For the gene
analysis, the significance of the Pearson correlations was
evaluated by calculating a p-value with the Pearson correla-
tion test in R. We then used the Benjamini–Hochberg (BH)
procedure to correct for multiple hypothesis testing and
control the false discovery rate (FDR) at a 5% level. This
method ensures that, on average, no more than 5% of the
statistically significant results are expected to be false posi-
tives. By adjusting the raw p-values using the BH procedure,
we obtained q-values for each test. A hypothesis test was
considered statistically significant if its q-value was less
than or equal to the predetermined FDR threshold of 0.05.
This approach strikes a balance between controlling the risk
of false positives and maintaining adequate statistical
power, making it suitable for our analysis involving multiple
comparisons.

Data visualization
Graphs were constructed using the R package ggplot2

included in the tidyverse package or the ggpubr package
for barplots. Heatmaps were constructed using the R
packages gplots and ComplexHeatmap. Networks were
visualized by plotting in the R package igraph or using
Gephi software. Pathway illustrations were created with
BioRender (https://www.biorender.com/). Figures were
combined and edited with Adobe Illustrator.

Data availability
The code described in the article is freely available on-

line at https://github.com/George-LabX. Additional code
and data for analyzing the whole-brain expression data
are available from https://alexkwanlab.org/data/. The re-
sults were obtained by running the code in R Studio on a
MacBook Pro.

Results
Cholinergic groups are distributed throughout the
nicotine withdrawal network
Using the methods summarized in Figure 1A, the nicotine

and saline control functional connectomes were obtained.
Immunolabeling of immediate-early gene expression like c-
fos captured the neuronal reactivity over a period of 1–2 h

during nicotine withdrawal. Automated registration onto an
anatomic reference atlas using the ClearMap pipeline (Renier
et al., 2016) then allowed for unbiased quantification of neuro-
nal activation throughout the brain. Finally, based on synchro-
nous reactivity between functionally connected brain regions,
correlation analysis of the Fos counts allowed calculation of
functional distances (Fig. 1B,C, Extended Data Fig. 1-1) and
construction of a whole-brain functional network that can be
further analyzed using graph theory (Fig. 1D,E, thresholded
for Pearson correlation. 0.75, Extended Data Figs. 1-2, 1-3).
The nicotine withdrawal network consisted of 175 brain re-
gions (nodes) with 4738 functional connections (edges),
which was a 50% increase from the saline control that had
3019 functional connections. Hierarchical clustering of the
correlation matrices with division of the dendrogram at half-
height revealed nine modules, which was a clear decrease
from the 13modules in the control network. The fivemain nic-
otine modules included both cortical and subcortical regions,
and were named based on the regions with the most signifi-
cant within-module influence based on the within-module
degree z score, which measures the intramodule connectiv-
ity or relative importance of a region within its own module
(Kimbrough et al., 2021). The long-projection cholinergic
groups did not cluster together in a single module as origi-
nally hypothesized, rather they were spread between the
modules. All five main modules contained at least one of the
eight main long-projection cholinergic groups (Ch1–8; Fig.
1D, circled in red). The largest cortico-mid-hindbrain module
contains cholinergic group 5 (PPN). Next, the cortico-hypo-
thalamicmodule contains cholinergic group 4 (MA). The inter-
mediate cortico-hypothalamic module contains cholinergic
group 1 (MS). The smaller orbitofrontal-extended amygdalar
module contains cholinergic groups 2 and 3 (NDB), choliner-
gic group 4 (SI), and the midbrain-thalamo-habenular module
cholinergic group 7 (MH) and lateral habenula (LH). The small-
est modules did not have any cholinergic regions. Note that
cholinergic groups 6 and 8 were omitted as they were too
posterior for the imaging.

Increased interaction of the long-range cholinergic
groups throughout the brain in two subsystems
To investigate the role of the cholinergic regions in the

organization of the whole-brain network, we first tested
whether the long-range cholinergic groups (Fig. 2A) were
significantly correlated with each other (Fig. 2B). The cor-
relation heatmap focusing on these regions showed the
emergence of two anticorrelated cholinergic subsystems
during nicotine withdrawal; one in the basal forebrain

Table 1: Statistical table

Data structure
(Shapiro–Wilk
test) Type of test

Power
(95% CI between
saline and nicotine
mean)

a Normal Two-way ANOVA �0.88 to �0.14
b Normal Two-way ANOVA �0.40 to �0.27
c Non-normal Mann–Whitney U test 36.00–50.00
d Non-normal Mann–Whitney U test �63.03 to �27.80
e Non-normal Mann–Whitney U test �0.20 to �0.11
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Figure 1. Functional network of nicotine withdrawal in mice. A, Experimental timeline for obtaining the nicotine withdrawal functional
connectome: mice were implanted subcutaneously with osmotic minipumps that delivered nicotine for 1week, 8 h after removal
brains were harvested using perfusion (1); the brains were immunolabeled for Fos and cleared using the iDISCO1 protocol (2); next,
the brains were imaged using light-sheet imaging at 647 nm for Fos and 488nm for autofluorescence (3); images were automatically
registered to the Allen Brain Atlas, and active cells counted per brain region using ClearMap (4); and the Fos cell counts of each re-
gion were correlated per group to obtain distances between the regions to create a network of the brain regions, which could be fur-
ther analyzed (5). B, C, Hierarchically clustered correlation heatmaps of the resting-state functional connectome under control
conditions (saline; B) or nicotine withdrawal (C), with 13 and 9 modules, respectively, depicted with colored squares and cholinergic
regions labeled as black squares on the diagonal. The order of the brain regions in the heatmaps is available in Extended Data
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consisting of MA, NDB, and SI, and one in the brainstem-
thalamic area consisting of PPN, MH, and LH, with the
MS in between. Under control conditions (saline), there
was no such organization. The average correlation be-
tween the cholinergic regions within the basal forebrain or
within the brainstem-thalamic network was significantly
higher in the nicotine group compared with the saline
group (two-way ANOVA: F(1,36) = 7.85, p=0.008), with a
significant difference between regions (two-way ANOVA:
F(2,36) = 4.62, p=0.016), and a significant interaction (two-
way ANOVA: F(2,36) = 3.36, p=0.046; Fig. 2C)a. Post hoc
analysis confirmed that under nicotine withdrawal the av-
erage correlation within the subgroups was significantly
higher than their interaction (p,0.04).
We then looked at how these long-range cholinergic

groups correlated with the different anatomic groups
throughout the brain using hierarchical clustering within
the main anatomic structures (cortical plate, cortical sub-
plate, striatum, pallidum, thalamus, hypothalamus, mid-
brain, hindbrain, or cerebellum; Fig. 2D,E). There was a
significant increase in correlation throughout the brain in
the nicotine group compared with the saline group (two-
way ANOVA: F(1,2082) = 100.7, p, 0.0001), without signifi-
cant difference between regions (two-way ANOVA:
F(8,2082) = 1.32, p=0.23), but with significant interaction
(two-way ANOVA: F(8,2082) = 3.21, p=0.0012)b. In line with
the overall increase in correlation, the post hoc test
showed an increase in the correlation of the choliner-
gic groups with the cortical plate (p, 0.0001), striatum
(p,0.0001), thalamus (p = 0.0035), and hypothalamus
(p,0.0001).
Finally, we looked at the interaction of the long-range

cholinergic regions with brain regions that have been
shown to be critical to nicotine addiction and nicotine
withdrawal, including the anterior cingulate area (ACA;
Hong et al., 2009; Wang et al., 2019; Abulseoud et al.,
2020), infralimbic area (ILA; George and Koob, 2010;
Huang et al., 2015; Kutlu et al., 2016), prelimbic area (PL;
George and Koob, 2010; Semenova et al., 2018), dorsal
peduncular area (DP; George and Koob, 2010), caudopu-
tamen (CP; Muskens et al., 2012; Huang et al., 2015), nu-
cleus accumbens (ACB; Rada et al., 2001; Schmidt et al.,
2001; Huang et al., 2015), bed nucleus of the stria termi-
nalis (BST; Reisiger et al., 2014; Qi et al., 2016), basolat-
eral amygdala (BLA; Bergstrom et al., 2010; Sharp, 2019),
central amygdala (CEA; Baiamonte et al., 2014; Huang et
al., 2015; Funk et al., 2016), ventral tegmental area (VTA;
Grieder et al., 2014; Huang et al., 2015; Wills and Kenny,
2021), and interpeduncular nucleus (IPN; Molas et al.,
2017; Wills and Kenny, 2021; Klenowski et al., 2022).
Here too, the minimal networks showed an overall
increased functional connectivity during nicotine with-
drawal, particularly among the cortex, subcortical re-
gions, and key cholinergic regions including cholinergic
groups 2, 3, 4, and 7 (PPN, MH, LH, SI, MA, and NDB),

which were separated in basal forebrain and brainstem-
thalamic groups (Fig. 2F).

Non-long-range cholinergic regions function as
connector hubs in the nicotine network
To better understand the role of the cholinergic groups

within the whole-brain network and to validate their role
as hub regions or identify others, we calculated the net-
work centrality measures: degree (number of connections
a region has) and betweenness (number of shortest paths
between two regions that go through a region). Nicotine
withdrawal significantly increased the average degree
(p, 2.2e-16c; Fig. 3A) and decreased the average betwe-
enness of the network (p=2.0e-08d; Fig. 3B). Regions
that were in the top 20 of both degree and betweenness
were considered hub regions (Wheeler et al., 2013). For
the saline network, two hubs with both high degree and
betweenness were identified: the hypothalamic parastrial
area (PS) and the midbrain cuneiform nucleus (CUN). For
the nicotine network, the following four hubs with those
criteria were identified: the fundus of the striatum (FS),
paraventricular hypothalamic nucleus (PVH), gustatory
areas (GUs), and posterolateral visual areas (VISpls). The
fundus of the striatum and caudoputamen stood out for
having significantly higher betweenness scores than other
regions, thus having a central role in the network involving
shortest paths during nicotine withdrawal.
Because the networks are modular, an important role of

hub regions is to act as connectors between modules,
which is captured through a high participation coefficient
that measures the intermodule connectivity or the extent
to which a region connects to multiple other modules.
Regions with a high participation coefficient were there-
fore also considered as hubs. Nicotine withdrawal signifi-
cantly decreased the participation coefficient (p = 3.5e-9e;
Fig. 3C). The cholinergic group 1 MS had the highest par-
ticipation coefficient of the network and thus functions as
a top connector between the network modules. The fun-
dus of the striatum and caudoputamen hubs also scored
high for this measure. The central role of these regions in
the network is confirmed by looking at their correlation
with all brain regions (Fig. 3D), which showed strongly in-
creased correlation during nicotine withdrawal.

Identification of novel gene targets that correlates
with brain-wide Fos activation
To examine the contribution of the regional expression

level of cholinergic-related genes like the nAChRs to the
organization of the functional connectome, the basal ex-
pression level of Chrna1-10, Chrnb1-3, Chrnd, and ChAT
throughout the brain was extracted from the in situ Allen
Brain database (Lein et al., 2007) and examined. While
Chrna1, Chrnb1, and Chrnd are generally considered
muscle-type subunits, expression in the brain has

continued
Figure 1-1. D, E, Network graph for saline (D) and nicotine withdrawal (E) with indication of cholinergic long-range regions (red
circles). The node colors represent the different modules and the node size represents the degree (number of connections). A larger
image of the network with labeled nodes is available in Extended Data Figures 1-1 and 1-2.
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Figure 2. Interactions among the long-range cholinergic groups and with the whole-brain for saline and nicotine. A, Brain schematic
showing the localization and circuitry of the long-range cholinergic groups divided in basal forebrain cholinergic system (BFCS;
blue) and brainstem-thalamic cholinergic system (BCS; brown), adapted from George et al. (2006). B, Heatmap representation of
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been observed (Aishah et al., 2017). No clear pattern
could be observed differentiating expression in the dif-
ferent modules of the functional connectome (Fig. 4A,
left; expression within the long-range cholinergic
groups is highlighted on the right). When organizing
the brain regions in anatomic order on the other hand, ex-
pression patterns could be observed with Chrna4 and
Chrnab2 being expressed mostly in the thalamus; Chrna3,
Chrna6, and Chrnb3 mostly in the midbrain; and Chrna1,
Chrna2, Chrna7, Chrna9, Chrna10, Chrnb1, and Chrnd
mostly in the cortical plate (Fig. 4A, middle).
Next, we wanted to compare the contribution of these

cholinergic-related genes to the changes in whole-brain
Fos activation and compare it with the other 19,413 genes
of which the in situ Allen Brain database contains the re-
gion-specific gene expression (Lein et al., 2007). For every
gene, we looked at the correlation between the baseline
gene expression level (percentage of pixels) and the Fos
expression change in nicotine withdrawal versus saline
control (log-fold change) for every region (Davoudian et al.,

2023; Fig. 4B). Significance was obtained for genes with a
correlation coefficient higher than |0.23| (false discovery
rate, ,5%; Fig. 4C), which included Chrna2, Chrna3,
Chrna10 (Fig. 4D), and Chrnd. The expression of the other
cholinergic-related genes did not significantly correlate
with the increased induction of Fos expression during nico-
tine withdrawal. However, we identified 1755 genes that
were significantly correlated with Fos expression during
withdrawal (false discovery rate,, 5%; Extended Data
Table 4-1).
To investigate the obtained gene list, it was inserted

into Reactome, the free, open-source, curated, and
peer-reviewed pathway database (Joshi-Tope et al.,
2005), which returned the following three top hits: (1)
octamer-binding transcription factor 4 (OCT4), sex-de-
termining region Y-box 2 (SOX2), and nanog homeo-
box (NANOG) activate genes related to proliferation
(p = 5.12e-3); (2) gene and protein expression by janus
kinase (JAK), signal transducer and activator of tran-
scription (STAT) signaling after Interleukin-12 stimulation

Figure 3 Centrality measurements for hub regions in the saline and nicotine networks. A–C, Degree (p, 2.2e-16c; A), betweenness
(p=2.0e-08d; B), and participation coefficient (p = 3.5e-9e; C), with the long-range cholinergic regions identifiable by a red dot and
the hub regions for nicotine withdrawal labeled. D, Heatmap representation of the correlation of the hub regions to all individual re-
gions in the brain (order of the regions same as in Extended Data Fig. 2-1).

continued
the correlation of cholinergic long-range groups. C, Average correlation (R) between the cholinergic long-range groups within the
basal forebrain cholinergic system (blue), brainstem-thalamic cholinergic system (brown), or between (*p, 0.05)a. D, Average corre-
lation (R) of cholinergic long-range groups with the rest of the brain organized into anatomic groups (*p, 0.05)b. E, Heatmap repre-
sentation of D with the correlation to all individual regions in the brain (Extended Data Fig. 2-1, order of the regions). F, Integration
of the long-range cholinergic groups in representative minimal addiction networks.
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Figure 4. Whole-brain expression distribution of cholinergic receptor subunits, cholinergic transferase, and other proteins. A,
Expression density throughout the whole brain hierarchically clustered by row and split into the modules of the nicotine-withdrawal
network (left; Fig. 1C, ordering of regions; Extended Data Fig. 1-1, list), split into anatomic groups (middle; Fig. 2E, ordering of re-
gions; Extended Data Fig. 2-1, list) and the selected long-range cholinergic groups (right; Fig. 2B, ordering of the regions). B,
Schematic diagram of the correlation analysis for each gene between basal mRNA expression level and nicotine withdrawal-induced
Fos transcriptional change in each region. C, Histogram of the number of genes (count) for all found correlations. D, Example corre-
lation graph for the most correlated cholinergic-related gene Chrna10. E, Schematic representations of the pathways identified by
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(p=1.08e–2), and methyl CpG binding protein 2 (MeCP2)
regulation of transcription of genes involved in GABA sig-
naling (p=6.91e–3; Fig. 4E).

Discussion
This work follows up on the published established

whole-brain nicotine withdrawal network obtained through
single-cell whole-brain imaging of the immediate early
gene c-Fos compared with controls (Kimbrough et al.,
2021), focusing on the long-range cholinergic regions to
help interpret and understand specific functional connec-
tome changes. Contrary to our hypothesis, the well defined
long-range cholinergic groups (Ch1–7) were not found to
cluster together, but rather were distributed throughout the
nicotine withdrawal network. Cholinergic regions showed
increased functional connectivity with all regions of the
brain through two anticorrelated subnetworks separated
into basal forebrain-projecting and brainstem-thalamic-
projecting cholinergic regions, validating a long-standing
hypothesis of the organization of the brain cholinergic sys-
tems. Most of the cholinergic-related genes were found to
have whole-brain expression profiles that correlated poorly
with the nicotine withdrawal-induced Fos changes except
for Chrna2, Chrna3, Chrna10, and Chrnd mRNA. Finally,
we identified a list of .1700 genes for which the baseline
expression correlated significantly with the altered brain re-
activity in the nicotine withdrawal state and identified cellu-
lar pathways that may contribute to neuronal activation
during nicotine withdrawal.
This report demonstrates that each of the main modules

in the nicotine withdrawal network includes at least one of
the well defined long-range cholinergic groups (Ch1–7),
and that the localization of each group within each mod-
ule was consistent with known anatomic and functional
connections for these groups (Fig. 1). Cholinergic group 1
is the primary cholinergic input to the hippocampus (Teles-
Grilo Ruivo and Mellor, 2013; Müller and Remy, 2018) and
was found in the cortico-hypothalamus module. Cholinergic
group 5 is the primary cholinergic input for the brainstem
(Grofova and Keane, 1991; Mena-Segovia and Bolam,
2017) and was part of the cortico-mid-hindbrain module.
Cholinergic groups 2, 3, and 4 are the primary projections to
the isocortex, striatum, and amygdala (Mesulam et al., 1983;
Luiten et al., 1987; Alheid and Heimer, 1988) and were
found in the orbitofrontal-extended amygdalar and cortico-
hypothalamic modules. Finally, cholinergic group 7 projects
to the brainstem and was found in the midbrain-thalamo-
habenular module. Cholinergic neurons have been de-
scribed to act and project globally rather than modularly,
which helps in communication throughout the whole brain
(Mesulam et al., 1983; Woolf, 1991).
Nicotine withdrawal had strong effects on the functional

connectome. First, the functional connectivity was in-
creased between the long-range cholinergic regions and

the rest of the brain (Fig. 2), particularly with the regions
that had lower functional connectivity under control con-
ditions such as the cortical plate, striatum, thalamus, and
hypothalamus. The increased synchronization between
the long-range cholinergic regions and the rest of the
brain may contribute to the synchronization of Fos activity
throughout the brain, resulting in decreased modularity
(Kimbrough et al., 2021). A possible mechanism underly-
ing this brain-wide synchronization is a global increase in
acetylcholine release during withdrawal (Rada et al.,
2001; Carcoba et al., 2014), leading to the activation of
nAChRs, intracellular cation influx, and activation of multi-
ple intracellular cascades activating c-Fos transcription
(Merlo Pich et al., 1999; Hu et al., 2002; Changeux, 2010;
Mizuno et al., 2015). These results are in line with human
fMRI data, where increases in resting-state connectivity
during nicotine withdrawal have also been observed
(Fedota and Stein, 2015). Moreover, increased local con-
nectivity within specific network nodes correlate with sub-
jective measures of nicotine craving and measures of
nicotine dependence (Claus et al., 2013; Janes et al.,
2014; Moran-Santa Maria et al., 2015).
Second, nicotine withdrawal caused a functional reor-

ganization of the long-range cholinergic network com-
posed of the MA, NDB, and SI on one side, and the MS,
PPN, MH, and LH on the other side, which are correlated
within, anticorrelated between, and connected to mostly
nonoverlapping regions in the brain. Also, when looking at
a minimal network containing the long-range cholinergic
regions and key regions known to be involved in addic-
tion, the same findings were illustrated, as follows: (1) in-
creased functional connectivity among the cholinergic
groups 2, 3, 4, and 7 and the anterior cingulate, infralim-
bic, prelimbic, dorsal peduncular, ventral tegmental area,
caudoputamen, nucleus accumbens, basolateral and
central amygdala, bed nucleus of the stria terminalis, and
interpeduncular nucleus; and (2) increased subdivision of
the circuitry in basal forebrain and brainstem-thalamic
cholinergic systems. Indeed, several cholinergic regions
(MH, MA, NDB) were not incorporated in this minimal
network under control conditions. The organization of a
basal forebrain and a brainstem cholinergic system re-
sembles the original anatomic descriptions of the basal
forebrain and brainstem cholinergic systems by Mesulam
et al. (1983), Woolf (1991), and George et al. (2006), which
not only validates the approach of single-cell whole-brain
imaging for functional connectome analysis, but has pro-
found implications from a theoretical point of view. Indeed, it
suggests that the different cholinergic regions throughout
the brain are not independent from each other, but instead
are functionally connected through two opposite systems: a
basal forebrain cholinergic system and a brainstem choliner-
gic system. Nicotine withdrawal then emerges with the
dysregulation of these two systems that become anticor-
related. Whether one cholinergic system inhibits the other

continued
the Reactome analysis for the identified significantly correlated genes: Oct4, Sox2, and Nanog activating genes related to prolifera-
tion (left), gene expression by JAK-STAT signaling (middle), and the MeCP2 pathway for regulating the transcription for genes in-
volved in GABA signaling through GAD1 and GAD2 (right), with the potential involvement of nicotine.
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or whether they are anticorrelated though the action of a
third system remains to be tested.
Third, the central hubs of the network changed. In the

saline control network, the CUN and PS acted as hub
regions with high degree and betweenness, measures of
network centrality (Fig. 3; Wheeler et al., 2013). Following
nicotine withdrawal, the fundus of the striatum and cau-
doputamen were identified as hub regions with the high
network centrality measures degree and betweenness.
The long-range cholinergic region MS (cholinergic group
1), which is the main input of the hippocampus and has
been associated with the anxiogenic effects of nicotine
(Zarrindast et al., 2013) had a high participation coefficient
and therefore also participated as a hub, especially in the
connection between the different modules. Its connector
role between the basal forebrain and brainstem choliner-
gic systems was already illustrated in Figure 2B. While the
fundus of the striatum is typically not recognized as a
long-range cholinergic region, it is a transition zone be-
tween the ventral part of the caudoputamen and the sub-
stantia innominate (cholinergic group 4) that expresses
high levels of acetylcholine esterase and where dopamine
release is under a particular tight cholinergic control
(O’Connor et al., 1995). The caudoputamen is the brain re-
gion with the highest basal acetylcholine level because of
a dense cholinergic arborization originating from choliner-
gic interneurons (Zhou et al., 2002; Gonzales and Smith,
2015; Abudukeyoumu et al., 2019). Caudoputamen cho-
linergic interneurons are critical to dopamine release, rein-
forcement learning and the formation of habit (Knowlton
et al., 1996; Matsumoto et al., 1999; Kitabatake et al.,
2003). These hub regions all play central roles in orches-
trating the negative emotional state under nicotine with-
drawal and were all found together in the intermediate-
size module 3 (Extended Data Figs. 1-1, 1-3). The medial
septum—fundus of the striatum—caudoputamen module
might thus function as the main nicotine-responsive mod-
ule that orchestrates the whole-brain response.
All nicotinic receptor genes, except the muscle-type

CHRNB1, including eight genomic regions containing 11
neuronal CHRN genes and 3 genomic regions containing
4 muscle-type CHRN genes, have been significantly as-
sociated with nicotine dependence and/or alcohol de-
pendence (Zuo et al., 2016). Analysis of the correlation
between baseline mRNA expression of the nAChRs in all
brain regions with the withdrawal-induced change in Fos
expression (Fig. 4B) showed significant correlation for
Chrna2, Chrna3, Chrna10, and Chrnd (Fig. 4C,D). Chrna2
has been identified in human genome-wide association
studies (GWASs) in association with smoking-related be-
haviors, like smoking status, smoking initiation, cigarettes
smoked per day, and smoking cessation (Liu et al., 2019;
Xu et al., 2020). Chrna3 is part of a locus on chromosome
15q25 with Chrna5 and Chrnb4, which has also been
identified in human GWASs to be associated with smok-
ing-related behaviors and nicotine dependence. One sin-
gle nucleotide polymorphism is specifically localized in
Chrna3 (Spitz et al., 2008; Liu et al., 2010). Chrna10 was
identified through linkage analysis in sibling pairs for nicotine
withdrawal (Pergadia et al., 2009) and was found, together

with Chrnd, to increase the risk for nicotine dependence in
an African American population subset (Saccone et al.,
2010). It is important to note that these correlations were ob-
tained using baseline gene expression with no exposure to
nicotine, suggesting that these genes may be predisposing
factors to nicotine dependence. However, further studies
are required to examine the correlation between withdrawal-
induced gene expression and withdrawal-induced Fos ac-
tivity. Looking at the mRNA expression was a first attempt
to link nAChRs levels to Fos activation. A limitation is that
mRNA expression does not necessarily correlate with pro-
tein levels or even functional activity of the protein; therefore,
while we observed significant correlations between some
nAChRs and differential Fos expression, it is possible that
negative results for other subunits may be because of a
lack of correlation between mRNA levels and protein lev-
els, for instance because of post-transcriptional events
(Mousavi et al., 2003).
Other study limitations are associated with the dataset.

Fos is inherently not a great marker for neuronal inhibition
and therefore poorly detects negative correlations be-
tween brain regions resulting from activation of inhibitory
neurons. The use of the recently identified marker for neu-
ronal inhibition could reduce this gap in future studies
(Yang et al., 2023). The dataset also has a relatively low
sample size. In our experience, the comparison of groups
of brain regions that are correlated versus regions that are
not correlated (among the �175 brain regions) is associ-
ated with large effect sizes (Cohen d, .1.8) and requires
only N=4–5/group for significant findings, which is in line
with what has been reported previously (Wheeler et al.,
2013; Orsini et al., 2018; Kimbrough et al., 2020, 2021). A
higher sample size would increase the ability to detect ef-
fects that have moderate to small size and further dissect
the different brain networks contributing to nicotine de-
pendence. Finally, both the original whole-brain reactivity
(Kimbrough et al., 2021) and whole-brain gene expression
(Lein et al., 2007) studies only incorporated male subjects
in their study and database precluding any analysis of sex
differences. Follow-up studies are needed to evaluate
whether these effects also exist in females.
We then extended the gene analysis to include the

mRNA transcript levels of all 19,413 genes of the in situ
hybridization gene expression Allen Brain Atlas database,
which resulted in a list of 1755 genes that had significant
correlations between their expression and the nicotine
withdrawal-induced Fos changes. Through pathway anal-
ysis (Joshi-Tope et al., 2005), we identified potentially
promising genes and pathways that may contribute to the
Fos expression during nicotine withdrawal. The first path-
way contained the transcription factors Sox2, Oct4, and
Nanog, which are highly expressed in proliferative adult
neurogenesis precursor cells in discrete brain regions
(Suh et al., 2007; Bennett et al., 2009; Ahlfeld et al., 2017;
Stevanovic et al., 2021) that are associated with Fos ex-
pression (Velazquez et al., 2015) and have been reported
to be affected by nicotine (Brooks and Henderson, 2021).
The second pathway was part of the immune response by
JAK2-STAT3, which has been shown to be activated by
nicotine through complex formation with Chrna7 or Crna4/
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Chrnab2 to provide neuroprotective effects (Shaw et al.,
2002; Wang et al., 2022). The third pathway brings up an-
other very relevant transcription factor, MeCP2, which is
mutated in the neurodevelopmental disorder Rett syn-
drome (Amir et al., 1999). MeCP2 knock-out mice have re-
duced ChAT-positive cells, which reduced Chrna4 and
Chrna6 expression, an attenuated behavior response to
nicotine (Leung et al., 2017), dysfunctional reduced GABA
signaling (Chao et al., 2010), and some reversed deficits
following nicotine administration (Zhang et al., 2016).
MeCP2 has been shown to modulate the effects of drugs
of abuse in preclinical models (Deng et al., 2010; Im et al.,
2010; Repunte-Canonigo et al., 2014; Xu et al., 2021).
GABA signaling, regulated by MeCP2 through GAD1 and
GAD2 that were both in the gene list, has a well established
role in nicotine dependence and withdrawal (Markou,
2008; D’Souza and Markou, 2013; Klenowski et al., 2022).
Despite relatively low significance for these pathways (loss
of significance with correction for multiple comparisons;
false discovery rate, 80%), the top three identified path-
ways have been shown to be affected by or associated
with nicotine, providing validity to this exploratory ap-
proach, which might be a way to further process and inves-
tigate the obtained whole-brain functional connectome
datasets. Finally, these results demonstrate the power of
using single-cell whole-brain imaging combined with
whole-brain transcriptomics to identify new brain regions,
new gene targets, and new cellular pathways that may
contribute to nicotine dependence and substance use dis-
order in general.
In conclusion, these results demonstrate that choliner-

gic regions increased functional connectivity with the rest
of the brain through two anticorrelated subnetworks sep-
arated into basal forebrain projecting and brainstem-tha-
lamic-projecting cholinergic regions. The expression level
of Chrna2, Chrna3, Chrna10, and Chrnd mRNA through-
out the brain was correlated with the nicotine withdrawal-
induced Fos changes. Finally, we have identified a list of
over ;1700 genes for which the baseline expression cor-
relates significantly with the altered brain reactivity in the
nicotine withdrawal state and identified cellular pathways
that may contribute to neuronal activation during nicotine
withdrawal.
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