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The neural basis of psychedelic action

Alex C. Kwan    1,2,3 , David E. Olson    4,5,6 , Katrin H. Preller    7  and 
Bryan L. Roth    8,9,10 

Psychedelics are serotonin 2A receptor agonists that can lead to profound 
changes in perception, cognition and mood. In this review, we focus on the 
basic neurobiology underlying the action of psychedelic drugs. We first 
discuss chemistry, highlighting the diversity of psychoactive molecules and 
the principles that govern their potency and pharmacokinetics. We describe 
the roles of serotonin receptors and their downstream molecular signaling 
pathways, emphasizing key elements for drug discovery. We consider the 
impact of psychedelics on neuronal spiking dynamics in several cortical 
and subcortical regions, along with transcriptional changes and sustained 
effects on structural plasticity. Finally, we summarize neuroimaging results 
that pinpoint effects on association cortices and thalamocortical functional 
connectivity, which inform current theories of psychedelic action. By 
synthesizing knowledge across the chemical, molecular, neuronal, and 
network levels, we hope to provide an integrative perspective on the neural 
mechanisms responsible for the acute and enduring effects of psychedelics 
on behavior.

Psychedelics have captured the imagination of neuroscientists since 
the early 20th century1, as they are molecules that can profoundly bend 
sensory processing, alter cognition and produce intense subjective 
experiences. The abilities of psychedelic drugs to modulate perceptual 
states provide powerful tools for probing the human mind. Psych-
edelics are also molecules that afford potential benefits to individuals 
diagnosed with a wide range of neuropsychiatric disorders, including 
depression, anxiety and substance-use disorders2–4. Unlike current 
treatment options, only one or a few sessions of psychedelic-assisted 
psychotherapy have been reported to yield durable reductions of 
symptoms in phase II clinical trials. For these reasons, psychedelics 
hold promise to transform neuroscience and psychiatry. Psychedelic 
research flourished in the 1950s and 1960s, when lysergic acid diethyla-
mide (LSD) and psilocybin were synthesized for pharmacological and 
behavioral research and were readily available. Controlled substance 

laws enacted in the 1970s led to a hiatus lasting several decades, but 
now there is renewed scientific interest in understanding psychedelics 
and their effects on the brain and body.

This Review article focuses on the neuroscience of psychedelics. 
We will begin with chemistry, move to receptors and molecular sign-
aling and finish with recent insights into how psychedelics modulate 
neurons and neural circuits. Because the emphasis is on basic neu-
robiology, we will set the stage with only brief descriptions of the 
behavioral effects and clinical relevance of psychedelics (Box 1) and 
preclinical assays for evaluating psychedelics in animal models (Box 2),  
which have been covered by other excellent reviews5–8. Our aim is to 
connect multiple levels of investigation to provide both an integrative 
and in-depth perspective on this topic. We will address questions such 
as how knowledge at the chemical and molecular levels may accelerate 
psychedelic-related drug discovery and whether neuronal and network 
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a two-carbon linker (Fig. 1a). When protonated, the basic nitrogen 
engages a key aspartate residue (D1553.32) in the binding pocket of the 
5-HT2A receptor, while the aromatic group makes important hydro-
phobic contacts with other residues in the protein9,10. A two-carbon 
linker length appears to provide optimal spacing between these 
functional groups for activation of 5-HT2A receptors. Shortening the 
linker length by one carbon converts the 5-HT2A receptor agonist 
N,N-dimethyltryptamine (DMT) into the 5-HT2A receptor antagonist 
gramine11,12, while increasing the distance between the aromatic group 
and basic amine can reduce affinity13. The specific identity of the aro-
matic group in the primary pharmacophore divides psychedelics into 
two broad structural families. Tryptamines possess a C3-substituted 
indole, while phenethylamines are characterized by a phenyl group. 
Ergolines, often considered as a distinct group, can be viewed chemi-
cally as a specialized case of tryptamines because the DMT pharmaco-
phore is embedded within the ergoline framework.

Comparing the conformationally flexible substituted tryptamines, 
such as psilocin and bufotenin, and rigidified ergolines, such as LSD, 
shows that rigidification of a primary pharmacophore can often 
increase affinity or potency (that is, the amount of drug necessary to 
bind to or activate a receptor) by easing entropic penalties to binding, 
and this may be one of the reasons that LSD is a particularly potent psy-
chedelic with respect to its ability to activate the 5-HT2A receptor and 
elicit associated behavioral responses. Potencies of the more flexible 
tryptamines are highly dependent on secondary contacts in the binding 
pocket, and, thus, tryptamine substitution can have a dramatic impact 
on potency. Typically, 4- and 5-substituted tryptamines are more potent 
than their 6- and 7-substituted congeners14. Like tryptamines, the 
potencies of phenethylamines can be modulated by both substitution 
and scaffold rigidification. The 2,4,5-trisubstitution pattern appears to 
be more favorable than the 3,4,5-trisubstitution pattern, as compounds 
such as 2C-I and 2C-B are much more potent than mescaline13. Potency 
can be further improved by conformationally restricting the ethyl-
amine group or the methoxy substituents as in the cases of (R)-TCB-2 
(ref.15) and 2C-B-dragonFLY16, respectively. In addition to rigidification 
strategies involving the aromatic ring, the potency of phenethylamines 
can be improved by structural modifications that promote additional 
secondary interactions with the 5-HT2A receptor or prevent metabo-
lism. In the case of N-benzylated compounds, such as 25I-NBOMe, 
potency is likely to be enhanced because the benzyl group appended to 
the basic nitrogen can engage a deep secondary binding pocket in the 
5-HT2A receptor9. In the case of (R)-2,5-dimethoxy-4-iodoamphetamine 
((R)-DOI), simple addition of a methyl group α to the basic amine yields 
amphetamine-like structures that are more resistant to oxidative deam-
ination by monoamine oxidase17. Similar effects have been observed for 
α-methyltryptamines18. The stereochemistry of the α-methyl group is 
important, with the R and S enantiomers of α-methylphenethylamines 
(that is, amphetamines) and α-methyltryptamines being the more 
potent optical isomers, respectively18,19. While LSD is classified here 
chemically as a tryptamine derivative, it is interesting to note that the 
(R)-amphetamine substructure is embedded within the ergoline scaf-
fold, making LSD a hybrid structure that contains the key elements of 
both psychedelic structural families (Fig. 1b).

A hallmark of psychedelics is their pharmacokinetic properties 
and high brain penetrance. Many psychedelics adhere to the ‘rule of 
three’ (that is, the molecular weight is <300 Da, calculated logarithm 
of the partition coefficient (ClogP) is ≤3, the number of hydrogen-bond 
acceptors is ≤3 and the number of hydrogen-bond donors is ≤3)20 and 
exhibit excellent CNS multiparameter optimization scores21, as they 
are small, relatively hydrophobic and possess few hydrogen-bond 
donors and acceptors. These physical properties enable psychedelics 
to cross the blood–brain barrier easily and rapidly, leading to high 
brain-to-plasma ratios22. Although tryptamine psychedelics bear 
substantial structural similarities to serotonin and have high affinity 
for many of the same receptors, the pharmacological properties of 

mechanisms can lead to unified theories explaining psychedelic action. 
We will complement discussion of recent results with historical findings 
that are often ignored in the current explosion of research activity. The 
goal of this review is to synthesize the field’s current knowledge and to 
highlight open questions that could spark further investigations into 
the neural basis of psychedelic action.

Chemistry of psychedelics
All classical psychedelics are derived from a primary pharmacoph-
ore consisting of an aromatic group separated from a basic amine by 

Box 1

Brief overview of behavioral 
effects and therapeutic 
potentials
The term ‘psychedelic’, from the Greek for mind-manifesting, 
was coined in 1956 by Humphrey Osmond, who chose the 
term because ‘it is clear, euphonious, and uncontaminated by 
other associations’146. Acutely, psychedelic drugs generate 
perceptual distortions, psychological experiences and labile 
moods147,148. The effects are often accompanied by imaginary 
percepts akin to hallucinations; hence ‘hallucinogens’ is another 
term used in the scientific literature to refer to molecules that 
include psychedelics. Some psychedelic users experience a 
reduced sense of self-referential awareness, a subjective feeling 
termed ‘ego dissolution’. In 2006, an influential study by Roland 
Griffiths and colleagues reported that psilocybin can evoke 
mystical-type experiences that impart personal meaning and 
spiritual significance149. The peak intensity of such an experience 
is associated with a level of 10–20 μg l–1 psilocin in plasma, which 
corresponds to ~60% occupancy of serotonin 2A (5-HT2A) receptors 
in the neocortex of humans32. There are noted variations in how 
individuals respond to the same dose of a psychedelic. Set and 
setting, which refers to a person’s internal state and external 
environment, may influence the psychedelic-induced subjective 
experience. Intriguingly, the intensity of mystical-type experience 
has been reported to correlate with therapeutic efficacy150.

It was recognized early that psychedelics may have therapeutic 
potential for treating mental illnesses. There is a rich history of 
experimentation with compounds such as LSD for alcoholism 
and psychiatric distress151, although these early studies lacked the 
rigor of current clinical trial designs. Recent trials have focused 
on psilocybin-assisted psychotherapy, starting with a few pilot 
studies demonstrating improvements in depression and anxiety in 
individuals with terminal cancer150,152,153. Subsequently, randomized 
phase II trials demonstrated a reduction of symptoms following 
psilocybin-assisted psychotherapy for major depressive disorder 
and treatment-resistant depression2,3. The results of these trials are 
notable for their relatively large effect sizes and enduring benefits 
lasting up to several weeks or months, although these remain to be 
confirmed in multisite, large-scale clinical trials. Psilocybin and other 
psychedelics have also shown value for overcoming substance-use 
disorders4. In parallel, although ketamine and MDMA are not 
considered to be psychedelic, their progressions through clinical 
trials (ketamine for depression154 and MDMA for post-traumatic stress 
disorder155) are part of a paradigm shift in psychiatry to leverage 
substances with acute psychoactive effects to induce long-term 
benefits for individuals with psychiatric disorders.
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serotonin differ substantially from those of psychedelics. While some 
of these differences can be attributed to how serotonin engages vari-
ous residues in the binding pocket of the 5-HT2A receptor23, another 
major factor is pharmacokinetics. Serotonin is a very polar molecule 
that cannot easily cross non-polar membranes. In fact, the majority 
of serotonin in the body is produced in the gut, and its high polarity 
ensures that peripherally produced serotonin cannot readily access 
the brain24. By contrast, methylation of serotonin produces bufotenin 
and 5-methoxy-DMT (compounds that are substantially more hydro-
phobic and thus capable of crossing the blood–brain barrier22). It is 
interesting to note that psychedelics with greater lipophilicity and/or 
pKa values closer to physiological pH tend to be more potent25. The pKa 
of mescaline is 9.56, while the pKa of LSD is 7.8 (ref. 26). Thus, compared 
to LSD, a substantially lower proportion of mescaline molecules exists 
in the deprotonated state that is capable of passively diffusing across 
the non-polar blood–brain barrier. This property, in addition to mes-
caline’s very weak partial agonism of 5-HT2A receptors, contribute to its 
low potency in vivo. The importance of pharmacokinetics in the actions 
of psychedelics is perhaps best illustrated by comparing psilocin and 
bufotenin. These compounds are constitutional isomers and differ only 
in the position of their phenolic hydroxyl groups (4- and 5-positions 
for psilocin and bufotenin, respectively). While these compounds 
exhibit comparable 5-HT2A receptor potencies and efficacies in vitro23, 
their in vivo effects are drastically different. In contrast to bufotenin, 
psilocin is orally bioavailable and readily crosses the blood–brain 
barrier because it can form an intramolecular hydrogen bond that 
improves lipophilicity by lowering the pKa of its amino group27.

Several psychedelics are natural products produced by plants and 
fungi, but others are non-natural structures conceived by humans (Fig. 1a).  
While some psychedelics can be obtained directly from natural sources, 
most are produced via de novo chemical synthesis from simple start-
ing materials. Although LSD is a non-natural compound, it is derived 
from the natural product lysergic acid through semisynthesis. Recent 
advances in synthetic biology have enabled the reconstitution of bio-
synthetic pathways in organisms such as yeast and Escherichia coli, and 
these techniques have the potential to enable large-scale production 
of several psychedelics and psychedelic precursors, such as psilocybin 
and lysergic acid28,29.

Receptors and molecular signaling
In humans, pretreatment with the 5-HT2 receptor antagonist ketan-
serin diminishes, in a dose-dependent manner, the ability of psilo-
cybin30 and LSD31 to alter subjective experience. The occupancy 
of 5-HT2A receptors in the brain relates closely to the intensity of 
the psychedelic effect32. These human data are corroborated by 
animal studies, which showed that human hallucinogenic poten-
cies and potencies in rodent drug discrimination assays scale with 
5-HT2A binding affinity33. Moreover, a strong correlation has been 
observed between human hallucinogenic potencies and potencies 
in the mouse head-twitch response34, which is abolished in 5-HT2A 
receptor-knockout mice35,36. Together, the evidence is overwhelming 
that the 5-HT2A receptor is crucial for the psychedelic effect. However, 
there are species differences that can affect the properties of 5-HT2A 
receptors. For example, primate and pig 5-HT2A receptors possess a 
serine at residue 242 in the binding pocket, whereas the rat and mouse 
receptors have an alanine at this position. Mutagenesis studies have 
demonstrated that an S242A mutation can drastically increase the 
dissociation rate of LSD9.

Notwithstanding the importance of 5-HT2A receptors, psych-
edelics have a complex pharmacology with actions on many other 
biogenic amine G-protein-coupled receptors8,37. LSD, for instance, is a 
high-affinity agonist for most of the 14 distinct human 5-HT receptors 
and has potent agonist activity at D1, D2, D3 and D4 dopamine and 
α1- and α2-adrenergic receptors37. In rodents, the actions of LSD at D2 
receptors have been postulated to mediate the relatively prolonged 
drug effects38, while its actions at D4 and 5-HT5A receptors may underlie 
select behavioral actions39,40. Likewise, psilocin is a potent agonist at 
many serotonin receptors41, and actions at the 5-HT1A receptor have 
been observed in humans42. It is currently unknown which of these 
receptors mediate the potential therapeutic actions of psychedelics, 
although recent studies in rodents and humans suggest that 5-HT2A 
receptors may not be the sole determinants42–44. Many psychedelic 
drugs (including LSD and psilocin) also have high affinities for 5-HT2B 
and 5-HT2C receptors9,45–47. The actions at 5-HT2B receptors are especially 
problematic as it is now well established that 5-HT2B agonists, when 
chronically administered, cause potentially life-threatening cardiac 
valvulopathy8,48. Although valvulopathy has not yet been sufficiently 
evaluated, there have been reports among individuals who have used 
3,4-methyl enedioxy methamphetamine (MDMA) chronically49 due to 
5-HT2B receptor activation50.

Downstream of 5-HT2A receptors, 5-HT2A agonists in general51,52 and 
psychedelics53,54 in particular activate Gq-like G proteins to enhance the 
hydrolysis of phosphatidylinositol-4,5-bisphosphate (Fig. 2a). This 
leads to the mobilization of intracellular Ca2+ by released inositol tris-
phosphate and the activation of protein kinase C via diacylglycerol51,52. 
Other signaling pathways at 5-HT2A receptors include activation of 
arrestin translocation9,46,47,55 and arachidonic acid release56. Actions at 
both Gq- and arrestin-signaling pathways have been implicated in the 
behavioral effects of various psychedelics, although in vivo evidence 
is sparse57–59. Some investigators have noted activity of mouse 5-HT2A 
receptors at an apparent Gi-mediated response for regulating arachi-
donic acid release60.

Box 2

Behavioral assays for evaluating 
psychedelics in animal models
Subjective experience in humans is assessed through self-reports 
and questionnaires, which cannot be applied to animals. In 
preclinical research, the main assays for evaluating psychedelics 
are drug discrimination and head-twitch response5,8. For drug 
discrimination, animals are trained for many weeks to distinguish 
between a psychoactive substance (for example, LSD) and vehicle 
by indicating their response via lever presses. On test day, the 
experimenter can determine the extent to which a test drug 
can substitute for the reference psychedelic. For head-twitch 
response, several species, including mice, rats and rabbits, exhibit 
high-frequency side-to-side head movements following the 
administration of a psychedelic drug. These assays have predictive 
validity because potencies in drug discrimination in rats33 and 
head-twitch response in mice34 correlate exceptionally well with 
hallucinogenic potencies in humans across a panel of several 
dozen distinct molecules. A difference between the assays is that 
the head-twitch response is an innate behavior, whereas drug 
discrimination is learned and requires animal training. Moreover, 
drug discrimination allows finer classification of molecules 
because a drug may act on multiple receptors that collectively 
contribute to the interoceptive stimulus. A partial substitution in 
drug discrimination is possible and would indicate that the test and 
reference compounds share some but not all features. However, 
it has been noted that these assays have certain pitfalls156,157, 
and ultimately it is important to recognize that these behavioral 
readouts in animal models are surrogate measures that cannot 
capture the full spectrum and nuances of the human experience.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 25 | November 2022 | 1407–1419  1410

Review Article https://doi.org/10.1038/s41593-022-01177-4

Although the molecular details responsible for psychedelic drug 
actions at 5-HT2A receptors have been elusive for many decades, recent 
breakthrough studies via X-ray diffraction and cryoelectron micros-
copy have provided crystal structures of psychedelic-bound serotonin 
receptors (Fig. 2b). The first study by Wacker and colleagues47 of LSD 
complexed with the 5-HT2B receptor was largely validated by a second 
report9 demonstrating that LSD interacts with 5-HT2A receptors via 
a variety of hydrophobic, ionic and other factors9. The results were 
further supported by additional structural biology results, including 
an inverse agonist-stabilized crystal structure of a complex of 5-HT2A 
receptors with the psychedelic drug 25-CN-NBOH along with the active 
nucleotide-free Gq hetereotrimer9. The availability of these relatively 
high-resolution structures of 5-HT2A and other relevant receptors61 
promises to produce novel insights into the molecular details of psy-
chedelic drug action.

Integrating chemical and molecular mechanisms 
to discover new compounds
Molecular advances have led to a surge of medicinal chemistry efforts, 
which seek to use computational modeling and structure–activity 
relationships to engineer psychedelic-based therapeutics.

The structure of psilocybin often serves as a starting point for these 
efforts, and although psilocybin is one of the most commonly studied 
psychedelics in clinical trials, it is not responsible for producing halluci-
nogenic effects. In fact, psilocybin is rapidly dephosphorylated in vivo 
and serves as a prodrug for psilocin62. Compared to psilocin, psilocybin 
exhibits higher chemical stability in the solid state and has a longer shelf 
life; although not published, this fact is well known among researchers 
in the field. Whereas clandestine labs have attempted to use prodrugs 
of psychedelics, such as 4-acetoxy-DMT and 1-propionyl-d-LSD41,63  
(Fig. 1a), to circumvent controlled substance laws, pharmaceutical 
companies have become interested in psychedelic prodrugs as a means 
to improve oral bioavailability or modify pharmacokinetic proper-
ties. The duration of a psychedelic-induced subjective experience 
could be a key parameter in the optimization of psychedelic-assisted 
psychotherapy. Psychedelics that produce hallucinogenic effects of 
shorter durations are likely to be more cost-effective and more scalable 
to implement at a clinic, given that contact time with medical profes-
sionals can be minimized64. However, this idea depends crucially on 
the assumption that the duration of the acute psychedelic effect can 
be manipulated without affecting efficacy, which has not yet been 
convincingly demonstrated in humans.
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Fig. 1 | Chemical phylogeny of psychedelics. a, The basic psychedelic 
pharmacophore is highlighted in blue. Tryptamine and phenethylamine 
pharmacophores are highlighted in gray and yellow, respectively. Ergolines 
(LSD and 1-propionyl-d-LSD (1P-LSD)) can be viewed chemically as a specialized 
case of tryptamines. Branches indicate structurally related compounds. Natural 
products are indicated with asterisks. 5-MeO-DMT, 5-methoxy-DMT; 4-AcO-DMT, 

4-acetoxy-DMT. b, LSD has the phenethylamine substructure (yellow) embedded 
and thus contains the key elements of both psychedelic structural families. 
c, Structures of non-hallucinogenic psychedelic analogs with therapeutic 
potential, which may contain the tryptamine-like (gray) or phenethylamine-like 
(yellow) pharmacophore. TBG, tabernanthalog.
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Parallel efforts to improve the scalability of psychedelic-like thera-
peutics have focused on engineering compounds that lack hallucino-
genic or perceptual effects but maintain sustained therapeutic efficacy 
after a single dose64. Presumably, these compounds could be adminis-
tered at home, obviating the need for costly in-clinic supervision, as is 
currently required for psychedelics and other intoxicating compounds, 
such as ketamine. Initial work in this area has focused on developing 
non-hallucinogenic entities (also referred to as non-hallucinogenic psy-
choplastogens65), such as isoDMT66, tabernanthalog67 and AAZ-A-154 
(ref.12), by slightly modifying the structures of known hallucinogenic 
compounds (Fig. 1c). On this front, the availability of high-resolution 
structures of 5-HT2A receptors in complex with psychedelics promises 
to accelerate the search for novel psychedelic and non-hallucinogenic 
5-HT2A agonists. For example, in silico design is beginning to yield 
potentially non-hallucinogenic 5-HT2A receptor ligands, such as 
IHCH-7086 (ref. 10; Fig. 1c). The search has been boosted by recent 
ultra-large-scale computational studies of hundreds of millions68 to 
billions69 of compounds, which have demonstrated the relative ease of 
discovering new chemotypes for many G-protein-coupled receptors.

What properties are desirable for novel psychedelic-based com-
pounds? Such novel chemical matter may have enhanced selectivity 
toward 5-HT2A receptors and therefore fewer off-target actions. Selec-
tive agonists would also represent useful tools for clarifying the role 
of 5-HT2A and other receptors in the hallucinatory and therapeutic 
actions of psychedelics. It should be possible to identify and optimize 
chemotypes with biased signaling profiles preferring Gq versus arrestin 
versus other potential signaling pathways to determine which of these 

pathways are physiologically and therapeutically relevant. Finally, 
developing psychedelic-like drugs devoid of 5-HT2B agonism is essential 
for therapeutic interventions that envision chronic dosing. Overall, 
efforts are aimed at leveraging functional selectivity to maximize 
efficacy, safety and tolerability.

Neurons and circuits modulated by psychedelics
Psychedelics modify neural activity dynamics by activating various 
receptors. Specifically, 5-HT2A receptor agonism increases neuronal 
excitability through multiple mechanisms, including membrane 
depolarization, diminished afterhyperpolarization and reduced 
spike frequency adaptation70. However, some psychedelics also bind 
to other receptors with opposing functional consequences; for exam-
ple, tryptamines, such as psilocin and 5-methoxy-DMT, have affinities 
for 5-HT1A receptors, which act to decrease neuronal excitability70,71. 
The relative abundance and subcellular distribution of the receptor 
subtypes will therefore dictate the overall effects of psychedelics on 
the electrical activities of a neuron72.

Acute effects
The effects of psychedelics on neurophysiology have been well studied 
in a few brain regions. In the prefrontal cortex, 5-HT2A receptors are 
primarily postsynaptic73 and highly enriched in the apical dendrites 
of deep-layer pyramidal neurons74,75 (Fig. 3a). The localization pattern 
suggests that psychedelics should increase dendritic excitability and 
induce excitatory postsynaptic potentials, as has been shown for sero-
tonin76. However, the impact of psychedelics in vivo is likely to be more 
complex because cortical microcircuits contain multiple subpopula-
tions of pyramidal neurons and subtypes of GABAergic neurons. These 
cell types express different amounts of 5-HT2A and other serotonin 
receptors72,77,78, which are reflected in their heterogeneous responses 
to serotonin neuromodulation79. In agreement with this, following 
systemic administration of DOI, frontal cortical neurons in vivo showed 
varied changes in firing rates across the neuronal population in the rat 
medial frontal cortex80.

The visual pathway has been a focus of neurophysiologists who 
are motivated by the hallucinogenic property of psychedelics. In one 
of the earliest studies, single-unit activities were recorded from the 
optic tract, lateral geniculate nucleus and visual cortex of anesthetized 
cats81. LSD was found to decrease neuronal firing in the lateral genicu-
late nucleus in response to optic tract stimulation. In the visual cortex, 
although the overall effect is also suppressive, individual neurons’ 
responses to psychedelics are heterogeneous; some cells increase spik-
ing, whereas others decrease or exhibit no change82. A more recent, sys-
tematic investigation corroborated these spiking activity differences 
and further indicated that feature tuning is intact, but surround sup-
pression is reduced, in mice after the administration of DOI83 (Fig. 3b),  
hinting at erroneous processing of contextual information. These 
results suggest that psychedelics suppress sensory inputs at multiple 
points along the central visual pathway.

Psychedelics also exert pronounced effects of firing activity in 
select subcortical nuclei, with the dorsal raphe as a prime example. 
The dorsal raphe is the largest serotonergic nucleus in the brain. In 
a series of elegant studies spanning more than 20 years, Aghajanian 
and colleagues found that intravenous administration of LSD can 
lead to a near-complete cessation of firing in the dorsal raphe within 
1–2 min, and that firing returns to baseline after 20–30 min in anes-
thetized rats84 (Fig. 3c). This effect is specific for psychedelics, with 
comparable effects being evoked by psilocin, DMT, mescaline and 
2,5-dimethoxy-4-methylamphetamine (DOM)85. By contrast, com-
pounds such as atropine, scopolamine and phencyclidine do not have 
appreciable effects on raphe unit firing85. Psychedelic-induced ces-
sation of spiking activity arises from local mechanisms within the 
dorsal raphe, probably through somatodendritic 5-HT1A receptors86. 
Initially, it was thought that the strong effects on raphe activity may be 
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responsible for the acute behavioral effects of psychedelics. However, 
subsequent studies in freely moving animals argued against this pos-
sibility, because LSD’s effects on raphe firing do not display tolerance87 
and are not aligned with behavioral changes88. It remains unclear which 
brain regions are responsible for the acute subjective effects in humans 
and which specific neural circuits mediate the head-twitch response 
in mice. In addition to the prefrontal cortex, visual cortex and dorsal 
raphe, psychedelics have been reported to alter synaptic neurotrans-
mission and spiking activities in the hippocampus43,89, locus coeruleus90 
and numerous other cortical and subcortical locations91.

Longer-term effects
The acute effects of psychedelics on molecular signaling and neuronal 
firing are precursors to long-term modifications in the brain. Indeed, 
analysis of mRNA transcripts shows that 90 min after a single dose of 

LSD in rodents, there are several-fold increases in the expression of 
immediate early genes associated with plasticity, such as Fos, Arc and 
Egr2 in the neocortex36,92. Further neural adaptation may rely on the 
upregulation of neurotrophic factors, such as brain-derived neuro-
trophic factor, which has been reported in some brain regions following 
the administration of psychedelics93. More comprehensive profiling of 
the transcriptional impact of psychedelics is underway, adding cell-type 
and epigenetic information78,94.

One enduring consequence of psychedelic administration is struc-
tural neural plasticity. In primary neuronal cultures, bath application 
of psychedelics can alter spine size95, increase spine density96 and 
promote the proliferation of dendrites97. Structural remodeling has 
likewise been observed in tissues ex vivo94,97 and in the intact brain 
in vivo for psilocybin and other psychedelic analogs44,67,98. In one recent 
study, longitudinal two-photon microscopy was used to track dendritic 
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spines in the mouse medial frontal cortex44. The results showed that 
a single dose of psilocybin led to a rapid increase in spine density and 
size within 24 h (Fig. 3a). Strikingly, spine density remained elevated 
for up to 1 month after the initial administration, which could poten-
tially underlie the long-lasting beneficial effects that follow psilocybin 
administration. It is worth noting that structural remodeling has also 
been observed in primary culture99 and in the medial frontal cortex 
after a single dose of the fast-acting antidepressant ketamine100, poten-
tially via acute actions on dendritic excitability101. However, ketamine 
is primarily an NMDA receptor antagonist. It is still unknown how keta-
mine and psychedelics, which engage distinct receptors, converge 
onto seemingly related structural plasticity processes at the neuronal 
level72,102. Studies with direct comparisons of multiple compounds99,103 
will be helpful to address this important question.

Networks involved in psychedelic actions
Psychedelic-induced changes in neuronal activity manifest in spon-
taneous and task-evoked activations of brain regions at the network 
level. The impact of psychedelics can be observed in the living human 
brain by using neuroimaging methods, such as positron emission 
tomography, single-photon emission computed tomography, func-
tional magnetic resonance imaging, electroencephalography (EEG) 
and magnetoencephalography. In the first neuroimaging studies of 
psychedelics, effects of mescaline and psilocybin were assessed using 
18F-fluorodeoxyglucose positron emission tomography to measure glu-
cose metabolism and single-photon emission computed tomography to 
assess cerebral blood flow104,105. Across the entire neocortex, psilocybin 
administration is associated with increased metabolism105 but reduced 
blood flow106. However, after adjusting for global changes, there is rela-
tive hypermetabolism in prefrontal cortical areas and hypometabolism 
in subcortical and occipital brain regions105. Similar regional differences 
in cerebral blood flow were confirmed by a subsequent arterial spin 
labeling study107. Collectively, these results demonstrate differential 
responses in associative and sensory cortical regions under the influ-
ence of psychedelics.

Another approach to assess the effects of psychedelics on neural 
architecture is to investigate the functional connectivity between 
or within brain networks, which refers to covarying activities across 
regions. Unfortunately, it has been challenging to compare results 
across studies because there are various measures of functional con-
nectivity, with some of them sensitive to preprocessing methods. 
Nevertheless, there are a couple of consistent findings. First, psilo-
cybin acutely reduces the activity and functional connectivity within 
association networks, including the default-mode network106,108–110, 
which consists of medial prefrontal cortex, posterior cingulate cortex 
and parietal regions and is thought to be activated when people are at 
rest and focused on internal mental processes. Further analyses using 
data-driven approaches, such as global brain connectivity, reveal that, 
while disintegrating the connectivity in associative brain regions, 
psilocybin and LSD concurrently induce hyperconnectivity between 
sensory brain regions108,111. Second, it has repeatedly been shown that 
LSD increases thalamocortical functional connectivity, in particular 
between the thalamus and sensory regions as part of the somatomo-
tor network108,112. These changes are corroborated by effective con-
nectivity, deduced from dynamic causal modeling, which highlights 
increases in thalamic connectivity to the posterior cingulate cortex 
and decreases to the temporal cortex113. Concurrent neuroimaging and 
pharmacological blockade confirm that the LSD-induced changes in 
functional network configuration rely on binding to 5-HT2 receptors108.

An exciting development in neuroscience is the availability of 
high-resolution atlases of gene expression and receptor binding across 
the entire brain. For instance, the Allen Institute for Brain Science 
applied in situ hybridization and single-cell sequencing approaches to 
map transcript levels of all genes in the brain114. These data have enabled 
exploratory analyses to correlate gene expression with drug-evoked 

functional magnetic resonance imaging signals in humans108,111, which 
highlight the importance of 5-HT2A receptors and potentially dopamine 
and glutamate receptors in shaping region-specific responses to LSD 
and psilocybin. Another notable advance is a protein density map 
of serotonin receptors and the serotonin transporter in humans115. 
These large-scale genomic and proteomic datasets open avenues for 
incorporating molecular and receptor information into biophysically 
based computational models116–118, with the aims of capturing and pre-
dicting how psychedelics interact within the constraints of the neural 
architecture to modulate activity dynamics.

While detailed network-level measurements of acute psychedelic 
effects are starting to emerge, longitudinal studies that can relate to 
enduring behavioral changes remain scarce. Comparisons of before 
versus after psilocybin administration revealed changes in resting-state 
network configurations that are detectable for at least 1 week after 
a single dose exposure119–122. Therefore, there are hints of enduring 
changes in brain networks, but the prolonged effects and their clini-
cal relevance remain understudied. Part of the challenge is the need 
to address inter- and intraindividual variations in psychedelic action. 
So far, it has been shown that an individual’s baseline functional con-
nectivity influences the magnitude of psilocybin-induced changes on 
network activation111. Additionally, baseline availability of 5-HT2A recep-
tors predicts the intensity and duration of the acute subjective experi-
ence123. A better understanding of the time course and heterogeneity 
of network-level effects will facilitate precision medicine approaches 
for psychedelic-assisted psychotherapy.

Integrating neuronal and network mechanisms to 
inform theories of psychedelic action
Building on current knowledge of the neuronal and network mecha-
nisms, different theories have been proposed to explain psychedelic 
action in the brain. We will highlight the cortico–striato–thalamocor-
tical (CSTC) model124, the relaxed beliefs under psychedelics and the 
anarchic brain (REBUS) model125, the strong prior (SP) model126 and the 
cortico–claustro–cortical (CCC) model127.

The CSTC model suggests that psychedelics alter information 
processing in the brain by stimulating 5-HT2A receptors located within 
cortico–striato–thalamic loops, resulting in a disruption of thalamic 
gating124. Consequently, an increase in feedforward information may 
underlie the acute subjective effects experienced under the influ-
ence of psychedelics (Fig. 4a). This model is supported by behavioral 
measures of impaired sensorimotor gating in humans after adminis-
tration of psilocybin and LSD128,129. Additionally, the model agrees with 
neuroimaging measures of increased thalamocortical functional con-
nectivity108,112 and synchronization of cortical sensory regions108,111,130.

The REBUS model postulates that psychedelics enhance bottom–
up flow of sensory inputs, while reducing the precision of prior beliefs, 
expectations and past experiences that normally constrain neural 
processing125 (Fig. 4b). The collective effect is predicted to increase 
entropy in neural dynamics125. Empirical evidence for this model hinges 
on the findings from neuroimaging of a disintegration of association 
networks, including the default-mode network106,109. More complex 
neural signals can be observed with magnetoencephalography and EEG 
after the administration of LSD, psilocybin and DMT131,132. Furthermore, 
frequency domain analyses can be used to estimate the directionality 
of signal propagation from multielectrode EEG recordings, which 
suggest that DMT weakens α-band oscillatory neural signals flowing in 
the top–down direction while potentiating the bottom–up signals133.

However, the REBUS model is at odds with various neurophysiolog-
ical and behavioral results, which instead favor the SP model. Specifi-
cally, recordings in animals showed mostly reduced stimulus-evoked 
spiking activity in the visual cortex81,83. Moreover, it is well known 
that perceptions are often not altered by vivid stimuli, but rather hal-
lucinations can occur for healthy humans under sensory deprivation 
in complete darkness134. These results suggest that the psychedelic 
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experience may arise from reduced bottom–up sensory inputs cou-
pled with aberrant reliance on top–down expectations, which consti-
tute key features of the SP model126 (Fig. 4c). Indeed, recent studies of 
conditioning-induced hallucinations data have provided evidence for 
such heightened dependence on inappropriate beliefs135.

Beyond the cortico–striato–thalamic loops, other recurrent net-
works in the brain may be involved, such as the CCC pathway. In one 
model127, psychedelics were suggested to disrupt communication 
between the prefrontal cortex and claustrum by aberrantly driving 
prefrontal inputs and/or activating the claustrum (Fig. 4d), which 
impairs the coordinated responses of association networks to changing 
task demands. The involvement of the claustrum has been suggested 
on the basis of the high density of 5-HT2A receptors5 and is supported 
by a recent study showing reduced functional connectivity between 
the claustrum and cortical networks after a low dose of psilocybin136.

It should be appreciated that the various models arise from dif-
ferent explanatory focuses. The CSTC and CCC models emphasize 
implementation, highlighting altered circuits without relying heavily 
on psychological implications. By contrast, SP is a theory of percep-
tual and cognitive processes that give rise to hallucinations, which 
is computational in nature and agnostic to implementation in the 
brain. SP may be reconciled with REBUS if the hypothesized weakened 
low-level beliefs eventually culminate in stronger extraperceptual 
beliefs, although more precise definitions of priors and beliefs will 
be helpful for comparing and testing these models. Ultimately, a uni-
fied model of psychedelic action should build on the growing body of 

knowledge at the neuronal and network levels and be tethered firmly 
to both implementation- and computation-based explanations.

Open questions
Accumulating evidence in humans and rodents strongly suggests that 
activation of the 5-HT2A receptor is primarily responsible for the hal-
lucinogenic effects of psychedelics. These receptors and their down-
stream signaling pathways may also mediate some of the therapeutic 
effects observed following psychedelic administration, considering 
that the 5-HT2A receptor is a common target shared by all psychedelic 
compounds. However, no clinical study to date has explicitly tested 
the molecular basis of the potential therapeutic effects of psychedelics 
in humans, whether through antagonist pretreatment or comparison 
with a non-hallucinogenic 5-HT2A agonist. In rodents, it remains debat-
able whether psychedelic-evoked neural plasticity requires functional 
5-HT2A receptors. On the one hand, pretreatment with ketanserin did 
not affect psilocybin-evoked structural remodeling43,44, although 
this manipulation does not block all 5-HT2A receptors in the rodent 
brain137. On the other hand, other data indicate that the 5-HT2A recep-
tor is essential for structural plasticity94,97, but these studies relied on 
in vitro preparations or constitutive knockout mice in which neurode-
velopment could be affected.

Another important caveat to consider is that many, if not all, 
psychedelics also potently activate the closely related 5-HT2C recep-
tor. This receptor is highly expressed in the brain and is known to 
regulate the function of mesolimbic dopaminergic neurons, making 
it an ideal therapeutic target for several neuropsychiatric disorders138. 
Complicating matters further, multiple isoforms of the 5-HT2C recep-
tor exist due to post-transcriptional RNA editing139. Unfortunately, 
we currently lack pharmacological tools that can adequately dif-
ferentiate between 5-HT2A and 5-HT2C receptors. To the best of our 
knowledge, there are no potent 5-HT2A receptor agonists that either 
lack affinity for 5-HT2C receptors or exhibit 5-HT2C receptor antago-
nism. Moreover, a truly selective 5-HT2A receptor antagonist has not 
yet been identified140. This dearth of selective pharmacological tools 
impedes our ability to achieve a full mechanistic understanding of 
psychedelic drug action.

In addition to psychedelics, other drugs, such as psychostimulants 
(including amphetamine and cocaine), can induce changes in dendritic 
architecture. A key difference is that psychostimulant-induced altera-
tions occur after repeated exposure over several weeks141. Another 
difference is that increases in spine density and dendritic branching 
after psychostimulant administration are more pronounced in striatal 
regions, such as the nucleus accumbens, although they can also be 
detected in the medial frontal cortex and hippocampus. Other chronic 
exposures, such as long-term diazepam treatment, can lead to a loss 
of cortical dendritic spines142. Therefore, although various drugs can 
modify the density of dendritic spines, they differ in specific param-
eters such as duration of treatment and affected brain regions. Find-
ing out those specific characteristics unique to psychedelic-induced 
neural plasticity will be important, particularly if we want to leverage 
structural remodeling as a biomarker for drug discovery.

The roles of cell types in driving the neural responses to psych-
edelics remain to be clarified. Many of the neurophysiological record-
ings were performed during a time when the diversity of cell types was 
less appreciated than it currently is. For example, in the frontal cortex, 
major classes of GABAergic neurons (including subtypes express-
ing parvalbumin, somatostatin and other markers) express varying 
amounts of different serotonin receptor subtypes72,78 and therefore 
should have distinct responses to psychedelics. Similarly, although the 
dorsal raphe nucleus is known for containing serotonergic neurons, 
those cells only constitute 30–50% of the population in this region, and 
the remainder of the population consists of glutamatergic, GABAer-
gic, dopaminergic and other peptidergic neurons that also express 
subtypes of serotonin receptors143. The local circuit interactions that 
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shape the neural activity dynamics induced by psychedelic compounds 
are largely unknown.

Taking a step back, an even greater gap in our current knowledge 
of psychedelics is linking causally these neurobiological actions to 
the compounds’ behavioral effects. Among the potential multitude of 
receptor targets, plasticity processes and cell types involved, it is not 
understood which of these mechanisms drive the beneficial effects 
seen in clinical trials. Without this fundamental understanding, we lack 
a foundation to guide optimal dosing and identify individuals who are 
likely to respond positively to psychedelics.

Looking ahead
What can we look forward to in the next decade for psychedelic 
research? A major question in the field is the extent to which the 
subjective experience may be separable from potential therapeutic 
effects144,145. The question can be reframed at the molecular level by 
asking whether the acute and long-lasting effects arise from activating 
the same receptors and/or the same intracellular signaling pathways. 
We may expect answers soon as more receptor structures become avail-
able, and the function of select signaling pathways are tested via genetic 
manipulations in preclinical species. Furthermore, the distribution 
of receptors and degree of biased agonism will vary across cell types 
and neural circuits, which must also play a role in shaping the effects 
of psychedelics. Current studies have focused on a few brain regions, 
but we can anticipate systematic investigations of psychedelic effects 
on dendritic excitability and spiking dynamics across the entire brain 
using optical imaging and large-scale electrophysiological record-
ings. It is not obvious whether the same or different neural circuits 
are responsible for psychedelics’ various perceptual, cognitive and 
therapeutic effects. In particular, the contribution of subcortical brain 
regions remains underappreciated. Such neurophysiological insights 
will complement the gene expression and receptor binding atlases to lay 
a foundation for more realistic computational models of psychedelic 
action. For neuroimaging, high-quality, well-powered studies through 
individualized, repeated sessions could provide further insights into 
the fine-grained changes in different brain regions and relate them to 
psychiatric conditions. After all, most modern psychedelic research 
shares a common goal, which is to find mechanistic explanations for 
how psychedelics impact human behavior. By integrating across levels 
and delving deep to understand the neural basis of psychedelic action, 
we hope to one day leverage the ability of these molecules to shape 
and heal minds.
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