nature
neuroscience

‘ '.) Check for updates

RESOURCE

https://doi.org/10.1038/541593-021-00895-5

A database and deep learning toolbox for
noise-optimized, generalized spike inference from
calcium imaging
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Inference of action potentials (‘spikes') from neuronal calcium signals is complicated by the scarcity of simultaneous measure-
ments of action potentials and calcium signals (‘ground truth’). In this study, we compiled a large, diverse ground truth data-
base from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators,
cell types and signal-to-noise ratios, comprising a total of more than 35 recording hours from 298 neurons. We developed an
algorithm for spike inference (termed CASCADE) that is based on supervised deep networks, takes advantage of the ground
truth database, infers absolute spike rates and outperforms existing model-based algorithms. To optimize performance for
unseen imaging data, CASCADE retrains itself by resampling ground truth data to match the respective sampling rate and noise
level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments

for unseen data, openly released a resource toolbox and provide a user-friendly cloud-based implementation.

maging of somatic calcium signals using organic or genetically

encoded fluorescent indicators has emerged as a key method to

measure the activity of many identified neurons simultaneously
in the living brain'”. However, calcium signals are only an indirect,
often non-linear and low-pass filtered, proxy of the more funda-
mental variable of interest—that is, the train of somatic action
potentials (spikes)’™. The relationship between calcium signals
and spike trains is ideally assessed directly by simultaneous elec-
trophysiological recordings—preferably in the minimally disruptive
juxtacellular configuration—and optical imaging of a calcium indi-
cator signal in the same neuron. These dual recordings can serve
as ground truth to calibrate and optimize algorithms for inferring
spike times or spike rates from other calcium imaging data (Fig. 1a).
Based on such ground truth datasets, various model-based meth-
ods’"'7 as well as supervised machine learning algorithms'*'*-*' for
spike inference have been developed.

Ideally, an algorithm should be applicable to infer spike rates
in unseen calcium imaging datasets for which no ground truth is
available. The relationship between spikes and the evoked calcium
signals depends on multiple factors, including neuron type, calcium
indicator type and concentration, optical resolution, sampling rate
and noise level. Many of these parameters can vary substantially
between experiments and even among neurons within the same
experiment. As a consequence, experimental conditions of novel
datasets are often not well matched to those of available ground
truth data. It is, therefore, not clear how an algorithm based on a
specific ground truth dataset generalizes to other datasets, which

complicates the inference of spike rates from calcium imaging data
under most experimental conditions'*'***%,

Here we address the issue of generalization systematically. To
assemble a large ground truth database, we performed juxtacel-
lular recordings and two-photon calcium imaging using different
calcium indicators and in different brain regions of zebrafish and
mice. This database was then augmented with a carefully curated
selection of publicly available ground truth datasets. Using this
large database, we developed a supervised method for calibrated
spike inference of calcium data using deep networks (termed
CASCADE). CASCADE includes methods to resample the original
ground truth datasets to match their sampling rate and noise level
to a specific calcium imaging dataset of interest. This procedure
allowed us to train machine learning algorithms upon demand on
a broad spectrum of resampled ground truth datasets, matching a
wide range of experimental conditions. Finally, we tested the perfor-
mance of CASCADE systematically when applied to unseen data.
CASCADE was robust with respect to any hyper-parameter choices
and outperformed existing algorithms in benchmark tests across all
ground truth datasets and noise levels. The CASCADE algorithm
can be used directly via a cloud-based web application and is also
available, together with the ground truth datasets, as a simple and
user-friendly Python-based toolbox.

Results
A large dataset of curated ground truth recordings. To extend
the spectrum of existing ground truth datasets, we performed
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Fig. 1| Ground truth datasets. a, A large and diverse ground truth database obtained by simultaneous calcium imaging and juxtacellular recording (left)
can be used (1) for the exploration of the ground truth by a user, (2) for the analysis of the out-of-dataset generalization of spike inference and (3) for the
training of a supervised algorithm for spike inference. The right column refers to relevant figures. Colaboratory Notebook refers to relevant cloud-based
tools accompanying this paper. b-f, Examples of ground truth recordings with different indicators, different brain regions and species. Left, calcium signal
traces (AF/F) are shown together with the detected action potentials. Dashed lines indicate breaks during recordings. Traces are representative for
recordings from different datasets (see Table 1 for detailed information). Middle, linear kernels of AF/F (time scale in seconds) and electrophysiological
data (time scale in milliseconds) triggered by single spikes. Right, fluorescence image of the respective neuron, together with the ROI for fluorescence
extraction. g, Average spike rate for each neuron of the ground truth database (log scale). Twenty-seven datasets were included in total. Datasets from
inhibitory neurons comprise DSs #22-27. h, Integral AF/F of the spike kernel (first 2 s) for each neuron. Lowest values are observed in PV-positive
interneurons (DS #23 and DS #24). See Extended Data Fig. 1 for the underlying kernels. AP, action potential.

simultaneous electrophysiological recordings and calcium imaging the juxtacellular configuration in an explant preparation of the whole
in adult zebrafish and mice (Fig. 1b-h and Table 1). In zebrafish, a  adult brain** using the synthetic calcium indicators Oregon Green
total of 47 neurons in different telencephalic regions were recordedin ~ BAPTA-1 (OGB-1) and Cal-520 as well as the genetically encoded

NATURE NEUROSCIENCE | VOL 24 | SEPTEMBER 2021 | 1324-1337 | www.nature.com/natureneuroscience 1325


http://www.nature.com/natureneuroscience

RESOURCE NATURE NEUROSCIENCE

Table 1| Overview of all ground truth datasets

Dataset  Calcium Induction method Animal Brain Frame Standardized Spikerate # of Recording  Source
identifier indicator model region rate noise (H2) neurons duration paper
(Hz) (%-Hz7?) (min)
#1 OGB-1 Acute injection Mouse V1 1.3 0.7+0.2 55+15 1 83 Theis et al.,
2016
#2 OGB-1 Injection + Mouse V1 15.6 0.5+0.1 0.2+02 16 16 Kwan and
tg(tdTomato-CaMKlla) Dan, 2012
#3 Cal-520 Acute injection Mouse S1 500.0 0.3+01 1.2+0.8 8 23 Tada et al.,
2014
#4 OGB-1 Acute injection Zebrafish  pDp 7.7 1.0+0.2 04+05 15 81 This paper
#5 Cal-520 Acute injection Zebrafish  pDp 7.8 20+13 1.3x+21 5 31 This paper
#6 GCaMPe6f tg(NeuroD) Zebrafish  aDp 30.0 1.3+£0.8 19+£0.7 8 46 This paper
#7 GCaMPe6f tg(NeuroD) Zebrafish  dD 30.0 0.6+0.1 1.5+£06 10 69 This paper
#8 GCaMPo6f tg(NeuroD) Zebrafish OB 30.0 0.8+0.2 53+£33 9 45 This paper
#9 GCaMPe6f AAV Mouse V1 60.1 0.4+01 06+02 N 129 Chenetal.,
2013
#10 GCaMPé6f tg(Emx1) Mouse Vi 160.1 0.5+0.2 1.6+14 23 72 Huang
et al.,, 2019
#11 GCaMPé6f tg(Cux2) Mouse Vi 1583 0.5+0.2 1.5+15 25 78 Huang
et al.,, 2019
#12 GCaMPé6s tg(tetOs) Mouse Vi1 151.6 0.8+01 1.0+04 6 13 Huang
et al.,, 2019
#13 GCaMP6s tg(Emx1) Mouse Vi 157.5 0.5+0.2 1.3+£07 26 62 Huang
et al.,, 2019
#14 GCaMPé6s AAV Mouse V1 60.1 0.5+0.2 04+04 7 70 Chenetal.,
2013
#15 GCaMP6s AAV Mouse V1 591 0.7+0.2 6.2+35 9 77 Theis et al.,
2016
#16 GCaMP6s AAV Mouse V1 59.1 09+0.2 58+33 9 25 Theis et al.,
2016
#17 GCaMP5k AAV Mouse V1 50.0 05+0.2 1.6+09 9 29 Akerboom
et al.,, 2012
#18 R-CaMP1.07  tg(Grik4-cre) + AAV Mouse CA3 20.0 1.6+0.3 22+08 4 33 Schoenfeld
et al.,, 2021
#19 R-CaMP1.07 AAV Mouse S1 15.0 0.6+0.2 09+10 9 50 Bethge
et al,, 2017
#20 jRCaMP1a AAV Mouse V1 15.0 1.3+0.5 0.6+£06 10 88 Dana et al.,
2016
#21 JRGECO1a AAV Mouse V1 29.8 1.0+£0.3 1.6+£20 M 18 Dana et al.,
2016
#22 OGB-1 Injection + tg(GFP-GIN) Mouse V1(SST) 15.6 0.6+0.1 11+£1.6 5 49 Kwan and
Dan, 2012
#23 OGB-1 Injection + Mouse V1(PV) 15.6 0.6+01 69+54 7 17 Kwan and
tg(tdTomato-PV) Dan, 2012
#24 GCaMPeé6f tg(PV-cre) + AAV Mouse V1(PV) 266 05+0.2 neé6+54 13 215 Khan et al.,
(in vitro) 2018
#25 GCaMPo6f tg(SOM-cre) + AAV Mouse V1(SST) 26.6 0.6+0.2 59+35 17 375 Khan et al.,,
(in vitro) 2018
#26 GCaMP6f tg(VIP-cre) + AAV Mouse V1(VIP) 26.6 21+13 55+25 1 252 Khan et al,,
(in vitro) 2018
#27 GCaMP6f tg(tdTomato-PV) + AAV  Mouse V1(PV) 30.0 2.8+11 70+41 4 30 This paper

Standardized noise of calcium signals (AF/F) was determined as described in the Methods. Frame rate is given as the mean across experiments if the frame rates varied (typically only slightly) across
experiments within a single dataset. Noise levels and spike rates are given as mean =+ s.d. across neurons.

calcium indicator GCaMP6f. In head-fixed mice, ground truth  Furthermore, we extracted ground truth from published studies
recordings were performed under anaesthesia in hippocampal area  of neurons in mouse primary somatosensory cortex (S1), using
CA3 using the genetically encoded indicator R-CaMP1.07 (ref. ).  Cal-520 and R-CaMP1.07, respectively (total of 21 neurons)***, and
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of inhibitory neurons in mouse primary visual cortex (V1), using
OGB-1 in vivo and GCaMPéf in slices, respectively (total of 69 neu-
rons)*?. A small new in vivo dataset for parvalbumin (PV)-positive
neurons using GCaMP6f (four neurons) complemented this dataset.
In addition, we surveyed openly accessible datasets and extracted
ground truth from raw movies (when available) or pre-processed
calcium imaging data'®'>*=*'. Rigorous quality control (Methods)
reduced the original number from a total of 193 available neurons
to 157 neurons. Together with our own recordings, we assembled 27
datasets comprising a total of 298 neurons, eight calcium indicators
and nine brain regions in two species, totaling ~38 h of recording and
495,077 spikes.

Recording durations, imaging frame rates and spike rates varied
greatly across ground truth datasets (Table 1). Typical spike rates
spanned more than an order of magnitude, ranging from 0.4 Hz to
11.6 Hz, and frame rates varied between 7.7 Hz and >160 Hz (Table 1
and Fig. 1g). Using regularized deconvolution, we computed the
linear AF/F kernel evoked by the average spike and found that the
area under the kernel curve varied substantially across datasets,
even for data from the same indicator, and was substantially smaller
for datasets with inhibitory neurons, especially for PV interneurons
(Fig. 1h). Interestingly, kernels showed large diversity even across
neurons within the same dataset (Fig. 1h and Extended Data Fig. 1),
which highlights the challenge faced by any algorithm that is sup-
posed to generalize to unseen data.

Inference of spike rates with a deep convolutional network.
Several favorable properties make supervised deep learning
approaches well suited for spike inference from calcium imaging
data. First, deep learning generally tends to outperform other clas-
sification or regression methods if the amount of training data is
sufficiently high (typically>1,000 data points for each category
in classification tasks)*. Second, the cost function can easily be
modified to optimize the metric of interest—for example, correla-
tion with ground truth or mean squared error—without changing
network architecture. Third, the temporal extent of receptive fields
of deep networks can be adapted to account for history-dependent
effects, such as the dependence of action potential-evoked calcium
transients on previous activity (see Supplementary Fig. 1 for an
example). Finally, deep networks are intrinsically non-linear, allow-
ing to fit non-linear behaviors of calcium indicators.

We designed a simple convolutional network that uses a seg-
ment of the calcium signal trace (expressed as percentage fluores-
cence change AF/F) around a time point f to infer the spike rate at .
Compared to two-dimensional image classification and object label-
ling*"*, requirements on computational hardware are low because
datasets are small and the inference task is only one-dimensional
(time). For example, ImageNet”, a dataset used for visual object
identification and detection in the deep learning field, is typically
used at a resolution of 256 X 256 =65,536 data points per sample,
whereas the input used for spike inference in this study was smaller
by approximately three orders of magnitude, typically consisting of
a segment of the AF/F trace with 64 data points.

We used a network architecture with a standard convolutional
design, consisting of rectifying linear units (ReLUs) that were dis-
tributed across three convolutional layers, two pooling layers and a
single dense layer. The final dense layer projected to a single output
unit that reported the estimated spike rate for the current time ¢
(Fig. 2a; see Methods for more details).

Resampling of ground truth data for noise matching. The key idea
underlying our approach is that the ground truth (training data) is
as important as the algorithm itself and should match as well as pos-
sible the noise level and sampling rate of the unseen population cal-
cium data of interest (test data). We, therefore, devised a workflow
where noise level and sampling rate are extracted from the test data

NATURE NEUROSCIENCE | VOL 24 | SEPTEMBER 2021 | 1324-1337 | www.nature.com/natureneuroscience

RESOURCE

and then used to generate noise- and rate-matched training data
from the ground truth database (Fig. 2b) by temporal resampling
and addition of noise. To facilitate gradient descent, the ground
truth spike rate is smoothed with a Gaussian kernel (c=0.2s unless
otherwise indicated; Methods).

To extract AF/F noise levels, we computed a standardized noise
metric v that is robust against outliers and approximates the stan-
dard deviation of AF/F baseline fluctuations. This metric was nor-
malized by the square root of the frame rate to allow for comparison
of noise measurements across datasets. Consequently, v has units
of %-Hz "2, which, for simplicity, we usually omit (Methods and
Extended Data Fig. 2). To generate training data with pre-defined
AF/F noise levels, we explored several approaches based on
sub-sampling of regions of interest (ROIs) or additive artificial noise
(Supplementary Note 1 and Supplementary Fig. 2). We identified
the addition of artificial Poisson-distributed noise as the most suit-
able approach to transform the ground truth data into appropriate
training data for the deep network.

To quantify deep network performance, we developed a set of
complementary metrics for the accuracy of spike inference (equa-
tions and illustrations in Supplementary Fig. 3). Following previous
studies, we calculated the Pearson correlation between ground truth
spike rates and inferred spike rates'®". As this correlation measure
of performance leaves the absolute magnitude of the inferred spike
rate unconstrained, we also determined two additional quanti-
ties: the error, which was defined as sum of the absolute deviations
between the inferred spike rate and the ground truth, and the bias,
which was defined as the sum of the signed deviations (Methods
and Supplementary Fig. 3). Error and bias were both normalized by
the number of true spikes to obtain relative metrics that can be com-
pared between datasets. Of these three metrics (correlation, error
and bias), correlation is arguably the most important one because it
estimates the similarity of inferred and true spike rates. Error and
bias are relevant for the inference of absolute spike rates because
they identify spike rate estimates that are incorrectly scaled or sys-
tematically too large or small.

The performance of the deep network degraded considerably
when the noise level of the test dataset deviated substantially from the
noise level of the ground truth. As expected intuitively, a network that
had only seen almost noise-free data during training failed to sup-
press fluctuations in noisier recordings. Conversely, we observed that
a network trained on very noisy calcium signals was unable to fully
benefit from low-noise calcium recordings, inferring only an impre-
cise approximation of the ground truth (Fig. 2c). A systematic itera-
tion across combinations of noise levels for training and test datasets
showed that, for each test noise level, the best model had been trained
with a similar or slightly higher noise level (Fig. 2d-g and Extended
Data Fig. 3). Very low noise levels (v < 2) result in a special case
(Fig. 2d,e): because some neurons of a given ground truth dataset do
not reach the desired noise level even without addition of noise (com-
pare to Table 1), the effective size of the training dataset decreases,
resulting in slightly lower performance. In general, however, it
turned out beneficial to train with noise levels that are adapted to the
calcium data to which the algorithm will be applied after training.

Parameter robustness of spike inference. Traditional models to
infer spiking activity typically contain a small number of param-
eters''"'>"° that describe biophysical quantities and are adjusted by
the user. Deep networks, in contrast, contain thousands or millions
of parameters adjusted during training that have no obvious bio-
physical meanings'*'®. The user can modify only a small number
of hyper-parameters that define general properties of the network,
such as the loss function, the number of features per layer or the
receptive field size—that is, the size of the input window shown
in Fig. 2a. We, therefore, tested how spike inference performance
depends on these hyper-parameters.
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Fig. 2 | Training a deep network with noise-matched ground truth improves spike inference. a, The default deep network consists of an input time
window of 64 time points centered around the time point of interest. Through three convolutional layers, two pooling layers and one small dense layer,

the spiking probability is extracted from the input time window and returned as a single number for each time point. b, Properties of the population data
(frame rate and noise level; dashed line) are extracted and used for noise-matched resampling of existing ground truth datasets. The resampled ground
truth is used to train the algorithm, resulting in calibrated spike inference of the population imaging data. ¢, Top, a low-noise AF/F trace is translated into
spike rates (inferred spike rates in black and ground truth in orange) more precisely when low-noise ground truth has been used for training. Bottom, a
high-noise AF/F trace is translated into spike rates (inferred spike rates in black and ground truth in orange) more precisely when high-noise ground truth
has been used for training. v in units of standardized noise, %-Hz"2 d, The spike inference performance for two test conditions (low noise, v=2, dark
gray; high noise, v =38, light gray) is optimal when training noise approximates testing noise levels. e, Correlation between predictions and ground truth is
maximized if noise levels of training datasets match noise levels of testing sets. f, Relative error of predictions with respect to ground truth. g, Relative bias
of predictions with respect to ground truth. Column-wise normalized versions of e-g are shown in Extended Data Fig. 3.

We found that the performance of the network was robust
against variations of all hyper-parameters (Supplementary Note 2
and Supplementary Fig. 4a—e), allowing us to leave all parameters
unchanged for all conditions. Moreover, overfitting was moderate
despite prolonged training, indicating that the abundance of noise
and sparseness of events act as a natural regularizer (Supplementary
Note 2 and Supplementary Fig. 4f-h). Finally, we tested different
deep learning architectures, including non-convolutional or
recurrent long short-term memory (LSTM) networks. Although
very large networks tended to slightly overfit the data, most net-
works performed almost equally well (Supplementary Note 2 and
Supplementary Fig. 5). Hence, the expressive power of moderately
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deep networks and the robustness of back-propagation with gra-
dient descent enables multiple different networks to find good
models for spike inference irrespective of the network architecture,
hyper-parameter settings and the chosen learning procedure. This
high robustness of the deep learning approach practically eliminates
the need for manual adjustments of hyper-parameters.

Generalization across neurons within the same dataset. Ideally,
the ground truth data used to train a network should match the
experimental conditions in the test dataset (calcium indicator type,
labelling method, concentration levels, brain region and cell type).
To explore spike inference under such conditions, we measured how
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well spike rates of a given neuron within a ground truth dataset can
be predicted by networks that were trained using the other neurons
in the dataset. First, all ground truth AF/F data were resampled to
a common sampling rate and adjusted to the same noise levels by
adding Poisson noise. If the initial noise level of a given ground
truth neuron was higher than the target noise level, the neuron was
excluded from this analysis. We then evaluated the performance
of CASCADE as a function of the noise levels of the (resampled)
datasets. As expected, correlations increased and errors decreased
for lower noise levels, whereas average biases were not systemati-
cally affected (Extended Data Fig. 4a-d). Performance metrics also
varied considerably across different neurons within a single dataset
when resampled at the same noise level v. To better understand this
variability, we performed additional analyses.

First, we found spike-evoked calcium transients to be variable
across neurons from the same dataset (Fig. 1h and Extended Data
Fig. 1). Large errors and biases, as well as low correlations, were
observed when spike-evoked calcium transients of a neuron devi-
ated strongly from those of other neurons (red arrow in Extended
Data Fig. 4; compare to Extended Data Fig. 1r for the respective
linear kernels of dataset (DS) #18).

Second, spike inference might be complicated by movement
artifacts or neuropil contamination. Movement artifacts typically
had slow onset and slow offset kinetics (Extended Data Fig. 5a)
or a faster, quasi-periodic temporal structure related to breathing
(Extended Data Fig. 5d,e). Neuropil contamination is often diffi-
cult to distinguish from somatic calcium signals and particularly
severe when neurons are tightly packed and densely labelled'-***
(Extended Data Fig. 5b). For a subset of datasets, we tested the
effect of simple center-surround subtraction of the neuropil sig-
nal®. Because subtraction is not perfect, decontaminated datasets
still contained residual neuropil signals (Extended Data Fig. 5b)
or negative transients (Extended Data Fig. 5c). Nonetheless,
spike inference was significantly improved by neuropil decon-
tamination (Supplementary Fig. 6). More detailed inspection
of the results showed that CASCADE learned to ignore nega-
tive transients and movement artifacts but only as long as they
were distinguishable from true calcium transients (Extended
Data Fig. 5a-c).

Third, we found that the activity of sparsely spiking neurons
is less well predicted because the calcium signal of single action
potentials is more likely to be overwhelmed by shot noise, particu-
larly in the high-noise regime (arrows in Extended Data Fig. 4a,c).
We, therefore, evaluated conditions required for single-spike pre-
cision and observed that either shot noise or other noise sources
were too prominent in all ground truth datasets to allow for reli-
able single-spike detection. The trained network, thus, system-
atically underestimated single spikes (Supplementary Fig. 7). This
observation was made using GCaMP indicators, which show a
strongly non-linear relationship between calcium concentration
and fluorescence and, therefore, are less sensitive to isolated single
spikes occurring during low baseline activity, but also using syn-
thetic dyes (Supplementary Fig. 7). These observations indicate
that the network needs to learn a tradeoff between false-positive
detections of noise events and false-negative detections of single
spikes. Additional details related to single-spike precision and
the possibility to discretize inferred spike rates are discussed in
Supplementary Note 3.

In summary, we found that CASCADE is able to generalize to
unseen neurons from the same ground truth training set. Not sur-
prisingly, the accuracy of generalization decreases with increasing
noise levels, in particular when spike rates are low. Accuracy is
fundamentally limited by the variability of calcium kernels across
neurons and probably also by the non-linearity of GCaMP-like
indicators, and accuracy is further reduced when additional noise
(motion artifacts or neuropil contamination) is prominent.
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Generalization across datasets. We next explored how spike infer-
ence by a network trained on one ground truth dataset general-
izes to other datasets. Using all available datasets, we quantified
the median performance metrics across all possible combinations
of datasets for training and testing and analyzed the performance
of each trained model across test datasets (Fig. 3). In most train-
ing/test combinations, correlations were high, whereas errors and
biases remained low. Exceptions were rare and occurred in data-
sets with considerable motion or neuropil contamination artifacts
(for example, DS #01 and DS #02 and DSs #21-23). The entries of
the matrix in Fig. 3 remained highly similar when parameters such
as the resampling rate, temporal smoothing of the ground truth or
the noise level were modified (Supplementary Fig. 8). Interestingly,
models trained on datasets that were dominated by excitatory neu-
rons (DSs #01-21, hence called ‘excitatory datasets’) also produced
high-quality predictions of spike rate variations in inhibitory neu-
rons (DSs #22-26, ‘inhibitory datasets’; Fig. 3a,b), although the
separate analysis of error and bias revealed that absolute spike rates
were substantially underestimated (Fig. 3c-f).

Near-maximal correlation for a given dataset was often achieved
by multiple models (Fig. 3a). In some datasets, the highest corre-
lation was even achieved when the model was trained on ground
truth from another dataset. Interestingly, the performance of train-
ing/testing combinations showed no obvious clustering related to
indicator type (for example, genetically encoded versus organic
indicators) or species (zebrafish versus mouse). An attempt to
explain the mutual predictability of datasets by more refined statis-
tical dataset descriptors, such as the mean spike rate or decay times,
was not very successful (Supplementary Fig. 9). It is, therefore, not
obvious how to select an optimal training dataset to predict spike
rates for an unseen dataset.

To optimize dataset selection and network training for practical
applications, we tested an alternative and simpler approach by train-
ing a model on all excitatory datasets except DS #01, hence called the
‘global EXC model’ (abbreviated as ‘EXC model’). We found that this
global model performed better than all other models in cross-dataset
tests (Fig. 3a—f; the test dataset was always excluded from training
data), due not only to the size but also to the diversity of the train-
ing set (Extended Data Fig. 6). Compared to randomly selecting
a single dataset with excitatory neurons for training, correlations
were increased by 0.05+0.05; errors were reduced by 0.05 + 0.05;
and absolute biases were reduced by 0.25+0.90 (median+s.d.). In
addition, the global EXC model performed better than any of the
21 single models in all cross-dataset tests (P < 0.001 for all com-
parisons, paired signed-rank test). Compared to predictions across
neurons within the same dataset (Extended Data Fig. 4; diagonal
elements in Fig. 3), the correlations resulting from the EXC model
were decreased by 0.02 +0.04 (P=0.04, Wilcoxon signed-rank test),
and errors were increased by 0.33+0.53 (P=0.01), whereas the
absolute bias was slightly decreased (0.40 +0.40, P=0.002). Hence,
using dataset-specific ground truth can yield performance signifi-
cantly better than the global EXC model. In the absence of such
specific calibration data, however, training the algorithm with all
available data is a simple and effective strategy to generate a model
that generalizes robustly to unseen datasets.

Not surprisingly, a global INH model’ trained on all inhibi-
tory datasets (DSs #22-26) generalized less well across all datasets
than the EXC model (Fig. 3). Indeed, the INH model was not more
successful than the EXC model in predicting activity of inhibitory
neurons with respect to correlation or error (P=0.84 and P=0.68;
Fig. 3a,c), although the bias was lower (P=0.03; Fig. 3e). Most
likely, generalization to unseen inhibitory neurons could be further
improved by additional ground truth for inhibitory neurons.

We also trained a model on a large artificial dataset (250 neurons)
that was generated using the calcium imaging simulation environ-
ment NAOMi" (Methods). The model performed well but lower
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Fig. 3 | Generalization across datasets. The network was trained on a given dataset (indicated by the row number) and tested on each other ground
truth dataset (column). Diagonal values correspond to metrics shown in Fig. 3e. 'NAOM:i' is a model trained on simulated GCaMP6f data based on
Charles et al.*°. Rows 21-24 are networks trained on datasets with inhibitory neurons. ‘Global EXC model’ and ‘global INH model’ are globally trained

on all excitatory or inhibitory datasets (except DS #01 and the respective test dataset). a, Correlation of predictions with the ground truth. The size

and color of the squares scale with correlation. b, Distribution of the performance of each trained network (row) across all other datasets (distribution
across n=25 datasets for each box plot). The dashed line highlights the median of the best-performing model (‘global EXC model). ¢, d, Relative error of
predictions compared to the ground truth. The dashed line in d highlights the median of the best-performing mode (‘global EXC model’). e, f, Relative bias
of predictions compared to the ground truth (distribution across n= 25 datasets for each box plot). All datasets were resampled at a frame rate of 7.5 Hz,
with a standardized noise level of 2. For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box; and
maximum/minimum values excluding outliers (points) are indicated by the whiskers.

than the global EXC model (correlation reduced by 0.05+0.04, example, variable decay times, transient shapes and non-linearities)
P=0.0003; error slightly increased by 0.06+0.22, P=0.0006; are captured by experimental ground truth but not by simulated
bias not significantly changed, P=0.67; Fig. 3). We hypothesize  ground truth recordings. A future application of NAOMi could be
that some relevant sources of variability at the neuronal level (for the simulation of ground truth data for new calcium indicators,
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when biophysical parameters are known but experimental ground
truth is not available.

Comparison with existing methods. To benchmark the perfor-
mance of CASCADE, we compared it to five other model-based
methods: the fast online deconvolution procedure OASIS with
two distinct implementations in CalmAn and Suite2p'>**"; the
discrete change point detection algorithm by Jewell and Witten*
(here referred to as Jewell&Witten); and two more complex algo-
rithms, Peeling and MLSpike. Peeling uses iterative template sub-
traction to infer discrete spikes''. MLSpike was chosen because it
outperformed various other methods in previous applications'>'°.
Although model-based methods are, in principle, non-supervised,
several parameters need to be tuned to achieve maximal perfor-
mance on a given dataset’. To avoid sub-optimally tuned algorithms
and to make the comparison with CASCADE as fair as possible, we
used extensive grid searches to optimize parameter tuning of each
algorithm/dataset combination (Methods; see Supplementary Table 1
for the best model parameters for each dataset as a function of
noise). This procedure allowed us to minimize the same loss func-
tion for all algorithms (mean squared error between ground truth
and the inferred spike rate), using grid search for model-based
approaches and back-propagation for CASCADE. Notably, the
neuron used for testing was always omitted during the training/fit-
ting period (leave-one-out strategy). We refer to these models as
‘tuned’ for specific datasets, as opposed to CASCADE’s ‘global EXC
model’ that was trained on other datasets (Fig. 3). The Peeling and
Jewell&Witten algorithms infer discrete spikes rather than spike
rates, which might result in a slight disadvantage. To convert their
output to continuous rates, predicted spikes were convolved with a
Gaussian kernel of a width that minimized the mean squared error.

The tested algorithms showed systematic differences in perfor-
mance (Fig. 4a and Extended Data Fig. 7). A quantitative comparison
across all datasets for a fixed noise level revealed that performance
varied strongly across ground truth datasets, single neurons and
algorithms (Fig. 4b and Extended Data Fig. 8). Neurons that could
be predicted well by one algorithm could often also be predicted
well by other algorithms (see Extended Data Fig. 8 for error and
bias), suggesting that outlier neurons within datasets exhibit
unusual properties that lead to biased predictions (Extended Data
Fig. 4). The tuned CASCADE model and CASCADE’s EXC model
produced good predictions for the broadest set of neurons across
datasets. High-level performance of the model-based algorithms
was observed in fewer datasets. For example, in multiple neurons
from diverse datasets, the performance of MLSpike was lower than
CASCADE (Fig. 4b; DS #7 and DS #8 (GCaMP6f in fish), DS #15 and
DS #16 (GCaMP6s in V1) and DSs #24-26 (GCaMP6f in inhibitory
neurons)). These datasets had relatively high (Table 1) and slowly
changing spike rates rather than discrete bursts. Interestingly, the
Peeling algorithm performed relatively well on some of these datas-
ets. To more directly compare the performances across neurons with
CASCADE, we calculated the difference in correlation achieved by
CASCADE and other algorithms for each neuron. The resulting dis-
tributions (Fig. 4c) show that CASCADE yielded better inferences
for most neurons across all compared algorithms (P <107 for all
comparisons with other algorithms; P=0.068 when compared to
CASCADE’s global EXC model; paired Wilcoxon signed-rank test).

The performance of CASCADE was consistently better across
different recording conditions. First, based on the finding that noise
levels affect spike inference more strongly than other parameters
(Supplementary Fig. 8), we repeated the benchmarking in Fig. 4b
across multiple noise levels. Performance ranking across algorithms
was largely maintained (Fig. 4d), with the global EXC model achiev-
ing performance close to the tuned CASCADE model (significant
difference: P=0.039, signed-rank test), followed by MLSpike,
Peeling, Suite2p and CaImAn and then followed by Jewell&Witten
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(P<107" for all algorithms). Although the error computed from
CASCADE’s predictions was significantly lower than for most
other algorithms (P<0.005 for Jewell&Witten, Suite2p, MLSpike
and CASCADE’s EXC model; P<0.01 for CalImAn but P> 0.05 for
Peeling; paired Wilcoxon signed-rank test), variability was high and
relative effect sizes were low (Fig. 4e). Therefore, errors are not a
very sensitive readout of performance. Finally, biases of predictions
were negative (indicating underestimates of true spike rates) for
all tuned model-based algorithms except for the tuned CASCADE
model (Fig. 4f). CASCADE’s EXC model exhibited the smallest
overall bias.

We further found that all algorithms systematically underes-
timated high spike rates. This effect was, on average, smallest for
CASCADE. To visualize these results, we plotted the number of
spikes for ground truth and predictions within each 2-s time bin
(Supplementary Fig. 10) and extracted the median lines of these
distributions (Fig. 4g). An underestimate of high spike rates might
be expected because periods of high activity are rare; false-positive
predictions of high spike rates might, thus, lead to larger perfor-
mance drops than false-negative omissions of rare events.

For spike inference evaluated at higher temporal precision, the
performance (correlation with ground truth) dropped for all algo-
rithms, but this effect was more modest for CASCADE than for
all model-based algorithms (Extended Data Fig. 9). We trained
all algorithms to a ground truth that was smoothed in time to a
variable degree (Gaussian smoothing kernel between 6 =0ms and
6 =333 ms; default: =200 ms). Example predictions highlight that
several algorithms make impressive predictions also under these
more difficult conditions (Extended Data Fig. 9a), but some algo-
rithms, in particular those based on discrete events (Peeling and
Jewell&Witten), were not able to include graded certainties about
spike times and, therefore, performed less well (Extended Data
Fig. 9b). However, also the performance of MLSpike, CalmAn and
Suite2p dropped faster than the performance of CASCADE when
spike rates were evaluated with increasing temporal precision
(Extended Data Fig. 9¢).

Predictions of different algorithms were not only similar across
neurons (Fig. 4b, Extended Data Fig. 8) but also exhibited corre-
lated temporal structure for predictions from the same neurons
(Fig. 4h—j). The shared variability, measured as the median correla-
tion between predictions, was particularly high for the two closely
related algorithms—Suite2p and CalmAn—but also for CASCADE
and MLSpike. Indeed, the correlation between CASCADE and
MLSpike was as high as the correlation between CASCADE and
the ground truth (Fig. 4h, bottom). To better understand these
similarities, we explored false predictions shared by algorithms and
computed the similarities (correlation) of the unexplained, resid-
ual variances across algorithms. These shared errors were promi-
nent (Fig. 4i,j). In particular, errors made by CalmAn, Suite2p,
Peeling and Jewell&Witten were often correlated, but CASCADE
and MLSpike also shared a relatively large fraction of unexplained
variance. We further divided the unexplained variance into false
positives (predictions higher than the ground truth) and false nega-
tives (predictions lower than the ground truth). False negatives but
not false positives were highly correlated across most algorithms,
with the exception of Suite2p and CalmAn, which also shared false
positives (Fig. 4j, right). Shared false negatives are clearly visible in
typical predictions (red arrows in Fig. 4a and, more prominently, in
Extended Data Fig. 7). Together, these analyses show highly similar
predictions and similar missed spike events across algorithms. In
summary, CASCADE predicted spike rates more accurately than all
other algorithms across datasets, across noise levels and for different
temporal precisions. Moreover, CASCADE showed a smaller bias
toward underestimating high spike rates.

Finally, we compared practical aspects arising during the appli-
cation of different algorithms. With respect to processing speed,
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we found that CASCADE (based on a GPU), CalmAn and 5million samples per second), whereas Peeling (5,000 samples per
Jewell&Witten performed similarly fast (200,000-300,000 samples  second) and, in particular, MLSpike (800 samples per second) were
per second). They were outperformed only by Suite2p (more than  much slower. For optimization, CASCADE uses back-propagation,
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which is almost equally fast as inference, resulting in a total train-
ing time of less than 10min for a typical ground truth dataset
with 5million data points and a realistic number of 20 iterations
(epochs) through the dataset. For model-based algorithms, we
performed extensive grid searches across parameters (usually in a
two-dimensional parameter space with 100-500 parameter combi-
nations), which is feasible within minutes for Suite2p, CalmAn and
Jewell&Witten. For Peeling and MLSpike, this procedure would take
several days for a single model. We, therefore, reduced the num-
ber of training samples for MLSpike and Peeling to achieve search
times of approximately 2 h per model for MLSpike. Furthermore, we
found that best fit parameters for model-based approaches changed
systematically with noise levels, suggesting that new models have
to be fit for each noise level (Supplementary Table 1), an effect that
was more pronounced for algorithms that do not use the noise level
as an input (Suite2p and Jewell&Witten). For some model-based
algorithms, we found that inferred spike rates were often tempo-
rally shifted to later time points, and this delay was variable
across datasets (0.16 +0.14s for MLSpike, 0.03+0.09s for Peeling,
0.31+0.23s for CalmAn, 0.29 +0.225s for Suite2p and 0.27+0.19s
for Jewell&Witten; mean delay + s.d. across datasets). We corrected
these shifts for all analyses presented here. Such a correction is not
necessary for a supervised algorithm such as CASCADE, which
learns the correct shift from the ground truth. Together, these
aspects reflect that, unlike model-based algorithms, CASCADE can
make use of ground truth datasets in an efficient and natural way.

Application to population calcium imaging datasets. A trans-
formation of calcium signals into estimates of spike rates might
be desired for multiple reasons. First, the reconstruction of spike
rates can recover fast temporal structure in neuronal activity
that is obscured by slower calcium signals®’. Second, a method
that infers spiking but ignores noise can eliminate shot noise and
potentially other forms of noise without the detrimental effects of
over-expressed indicators' and without compromising temporal
resolution. Third, although calcium signals usually represent
relative changes in activity, spike rates provide absolute activity
measurements that can be compared more directly across experi-
ments. With these potential goals in mind, we applied CASCADE
to different large-scale calcium imaging datasets.

In a brain explant preparation of adult zebrafish**, we measured
odor-evoked activity in the posterior part of telencephalic area Dp
(pDp), the homolog of piriform cortex, using OGB-1. Multi-plane
two-photon imaging® was performed as in DS #04 at a noise level
0f 2.36 +0.97 (%-Hz V%4 median + s.d.) across 1,126 neurons. Under
these conditions, predictions are expected to be highly accurate
(Extended Data Fig. 4a,e; correlation to ground truth: 0.87+0.06
for a noise level of 2, median + s.d.; Gaussian smoothing of the
ground truth with 6=0.2s). Consistent with electrophysiological
recordings*, spiking activity estimated by CASCADE with a model
trained on DS #04 was sparse (0.6 + 1.1 spikes during the initial 2.5
of the odor response; mean + s.d.; Fig. 5a) and variable across neu-
rons (Fig. 5b) and clearly different for the anatomically distinct dor-
sal and ventral regions of pDp (0.07 +0.11 Hz versus 0.21 +0.11 Hz;
entire recording).

The comparison of AF/F signals and inferred spike rates showed
that CASCADE detected phases of activity but effectively sup-
pressed small irregular fluctuations in activity traces, indicating
that spike inference suppressed noise. Consistent with this inter-
pretation, spike inference by CASCADE increased the correlation
between time-averaged population activity patterns evoked by the
same odor stimuli in different trials (Fig. 5¢,d).

Previous studies showed that odor-evoked population activity
in pDp is dynamic**, but the fine temporal structure has not
been explored in detail. We analyzed inferred spike rate patterns
using unsupervised non-negative matrix factorization for sequence
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detection (seqNME, ref. *) to identify recurring short (2.5-s)
sequences of population activity (factors) in the overall population
activity. Factors showed rich temporal structure on a sub-second
time scale (Fig. 5e). Multiple factors were active with high preci-
sion and in a stimulus-specific manner at distinct phases of the odor
response. For example, factors 2 and 4 in Fig. 5e were transient and
associated with response onset; factor 5 persisted during odor pre-
sentation; and factor 6 was activated after stimulus offset (Fig. 5e).
Odor-evoked population activity, therefore, exhibited complex
dynamics on time scales that cannot be resolved without temporal
deconvolution. The transformation of calcium signals into spike rate
estimates by CASCADE, thus, provides interesting opportunities to
use calcium imaging for the analysis of fast network dynamics.

We next analyzed the Allen Brain Observatory Visual Coding
dataset, comprising more than 400 experiments in mice with
transgenic GCaMP6f expression, each consisting of approximately
100-200 neurons recorded at very low noise levels (0.94+0.25
%-Hz % mean + s.d.; Fig. 6a)”. Using the global EXC model of
CASCADE, we estimated the absolute spike rates across all 38,466
neurons from different transgenic lines (Fig. 6b and Extended Data
Fig. 10; Gaussian smoothing of the ground truth with 6=0.05s).
Spike rates were well described by a log-normal distribution cen-
tered around 0.1-0.2 Hz (Fig. 6¢). Given the sampling rate (30 Hz)
and noise level of this dataset, we expect a correlation of 0.89 +0.18,
an error of 0.70 +0.96 and a bias 0of 0.27 +1.00 (median =+ s.d. across
neurons), based on our previous cross-dataset comparisons, which
included transgenic lines used in this population imaging dataset
(Fig. 3). Because generalization could not be tested across a large
number of inhibitory neuron datasets (Fig. 3), we did not include
interneuron experiments in our analysis. Inferred spike rates varied
systematically across cortical layers, with highest activity in layer 5
(Fig. 6d,e). Inferred rates also varied across transgenic lines (Fig. 6d)
and across stimuli presented, with highest activation during natu-
ralistic stimuli (natural scenes or movies; Fig. 6¢). These results pro-
vide a comprehensive description of neuronal activity in the mouse
visual system and reveal systematic differences in neuronal activity
across cell types, brain areas, cortical layers and stimuli.

Raw AF/F often exhibited correlated noise, visible as a vertical
striping in matrix plots, which was small for individual neurons but
tended to dominate the mean AF/F across neurons, possibly due
to technical noise or neuropil signal (Fig. 6f). CASCADE visibly
eliminated these artifacts (Fig. 6g). As a consequence, correlations
between activity traces of different neurons were reduced across all
experiments by 38% +43% (mean +s.d.; Fig. 6h; P < 107", paired
signed-rank test). Using data simulated with NAOMi, we also found
that spike inference by CASCADE brought measurements of pair-
wise firing rate correlations closer to the true values as compared
to the raw calcium data (Supplementary Fig. 11). As many analyses
of neuronal population activity require accurate measurements of
pairwise neuronal correlations**, noise suppression and decon-
volution by spike inference can help to make these analyses more
reliable. These examples illustrate how calibrated spike inference by
CASCADE can be applied to remove noise from calcium signals and
to analyze the temporal structure of neuronal population dynamics.

A user-friendly toolbox for spike inference. The deployment of
spike inference tools often creates practical problems. First, the
difficulty to set up a computational pipeline might prevent wide-
spread usage. We, therefore, generated a cloud-based solution using
Colaboratory Notebooks that can be applied without local installa-
tions. We also set up a well-documented GitHub repository (https://
github.com/HelmchenLabSoftware/Cascade) containing ground
truth datasets, pre-trained models, notebooks and demo scripts
that can be easily integrated into existing analysis pipelines, such
as CalmAn, SIMA or Suite2P****. Because the algorithm works on
regular laptops and workstations without GPU support, the main
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and inferred discrete spikes, highlighting the de-noising through spike inference. ¢, Correlation of odor-evoked responses across trials, based on AF/F data
during the initial 2.5s of the odor response. d, Correlation of odor-evoked responses across trials, based on inferred spiking probabilities. e, Unsupervised
detection of sequential factors (left) and their temporal ‘loading’ (bottom), shown together with the inferred spiking probabilities (center) across a subset
of stimulus repetitions. The temporal loadings indicate when a given factor becomes active. All neurons were ordered according to highest activity in
pattern 4, highlighting the sequential activity pattern that is evoked by stimuli at multiple times. SR, spike rate.
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Fig. 6 | Inference of spiking activity with CASCADE for the Allen Brain Observatory dataset in mice. a, Number of recorded neurons versus standardized
noise levels (in %-Hz="2) for all experiments from excitatory pyramidal neurons (PN, blue) and inhibitory neurons (IN, red); population imaging datasets
in zebrafish (Fig. 5) in black for comparison. b, Example predictions from calcium data (blue). Discrete inferred spikes are shown in red below the inferred
spike rates (black). See Extended Data Fig. 10 for more examples. ¢, Spike rates across the entire population are well described by a log-normal distribution
(black fit). n=38,466 neurons. d, Inferred spike rates across all neurons for recordings in different layers (colors) and for different transgenic driver lines
of excitatory neurons. Each underlying data point is the mean spike rate across an experiment (n=336 experiments). e, Average spike rates for different
stimulus conditions (x labels) across layers (colors). Each data point is the mean spike rate across one experiment. f, Excerpt of raw AF/F traces of a
subset of neurons of a single experiment (L2/3-SIc17a7, experiment ID '652989705"). Correlated noise is visible as vertical striping patterns. g, Same as

f but with inferred spike rates. h, Average correlation between neuron pairs within an experiment (n=336 experiments), computed from raw AF/F traces
(left) and inferred spike rates (right). For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box; and
maximum/minimum values excluding outliers (points) are indicated by the whiskers. AP, action potential; SR, spike rate.

installation difficulties of typical deep learning applications are
circumvented.

In a typical workflow, the noise level for each neuron in a cal-
cium imaging dataset is determined. Then, a model that has been
pre-trained on noise-matched, resampled ground truth is loaded
from an online library and applied to the AF/F data without any
need to adjust parameters. CASCADE can be easily modified and
retrained to address further specific needs, such as more complex
loss functions® or a modified architecture. Moreover, the resampled
ground truth can be adapted directly if desired. For example, we
used a Gaussian kernel to smooth the ground truth spike rate, but
this standard procedure can be disadvantageous to precisely deter-
mine the onset timing of discrete events. In CASCADE, it is simple
to replace the Gaussian kernel by a causal smoothing kernel to cir-
cumvent this problem (Supplementary Fig. 12).

A second problem is that experimenters might need additional
tools and documentation for interpretation of the results. We,
therefore, included graphical outputs and guiding comments that
are accessible also for non-specialists throughout the demo scripts.
Together with existing literature on the interpretation of raw cal-
cium data*>***"", these tools will help to focus the attention on data
quality and make users aware of the potentials and limitations of
raw and deconvolved data.

Discussion

Any spike inference approach, in particular methods based on
deep learning, critically depend on the availability and quality of
ground truth data. We, therefore, created a ground truth database
that is larger and more diverse than previous datasets'®" (Fig. 1).
Moreover, we developed CASCADE, a novel algorithm for spike
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inference based on deep learning. The central idea of CASCADE is
to optimize the match between the training data and experimental
datasets rather than to invest primarily into the optimization of the
inference algorithm itself. Unlike previous supervised spike infer-
ence algorithms'**, CASCADE is not trained on fixed ground
truth data but resamples the ground truth to match both frame rate
and noise level automatically for each neuron (Fig. 2). This strategy
significantly improved inference, highlighting the importance not
only of realistic calcium signals but also of realistic noise patterns.
The generalization of spike inference methods across unseen
datasets was investigated sporadically’>'***, but systematic studies
were lacking, presumably due to the scarcity of ground truth data.
We, therefore, took advantage of our large database to explore how
predictions depend on species (zebrafish or mouse), indicator type,
brain region (Fig. 3) and other potentially important experimen-
tal parameters. Surprisingly, some training datasets allowed for
efficient generalization across these parameters, and a combined
training dataset achieved uniformly high performance across all
test sets. This result was obtained for both excitatory and inhibitory
neurons, although absolute spike rates of inhibitory neurons were
underestimated. The ‘global EXC model, therefore, exhibits efficient
generalization and is well suited for practical applications of spike
inference in unseen datasets. Interestingly, some datasets performed
poorly as training sets, whereas others performed poorly as test sets,
even when compared against datasets with a similar indicator and/
or from the same brain region. These observations suggest that gen-
eralization is affected significantly by experimental differences that
are difficult to identify, such as indicator concentration or baseline
calcium concentrations. However, this problem can be overcome by
training networks on a diverse ground truth database, indicating
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that networks can learn to take these variations into account when
sufficient information is provided during training.

In comparison to other approaches, spike predictions by
CASCADE were more precise, as measured by correlation metrics,
but also less biased toward underestimates of true spike rates
(Fig. 4). We reason that reliable spike inference critically depends
on the balance between spike detection and noise suppression.
Although over-suppression appears to be advantageous in less
expressive models, deep networks appear to afford less suppression
because their high expressiveness allows for highly specific differ-
entiation between signal and noise. CASCADE exploits this feature
while keeping the network size small, which prevents overfitting. In
theory, it is possible that other algorithms outperform CASCADE
in regimes that are not covered by the ground truth database (for
example, extremely low noise levels or tonically spiking neurons that
are transiently inhibited®'). Our results also indicate that enhancing
the diversity of ground truth datasets can be more efficient than
simply increasing dataset size to achieve further improvements in
performance (Extended Data Fig. 6).

CASCADE was not sensitive to user-adjustable hyper-parameters
or the class of the deep networks tested, which has two practical con-
sequences. First, it seems more valuable to optimize the acquisition
of more specific and diverse ground truth and the pre-processing
of calcium data rather than to focus on improvements of the deep
networks. Second, because hyper-parameters do not need to be
adjusted by the user, the application of spike inference becomes
simple in practice. Although some previous studies assumed that
user-adjustable parameters in model-based algorithms increase the
interpretability of the model''~%, we argue here that (1) biophysical
model parameters are often ambiguous'’ and, therefore, not directly
interpretable, and (2) it is more important to focus on the interpret-
ability of the results rather than the model. To this end, our toolbox
provides methods to estimate the expected error of the results and
a detailed documentation in the Colaboratory Notebook with help
for interpretation.

Quantitative inference of spike rates is critical for the analysis
of existing and future calcium imaging datasets*>**. The approach
usually requires single-neuron resolution and is less well suited
for signals from multiple neurons, such as endoscopic one-photon
data with high background fluorescence, fiber photometry or
wide-field imaging. Moreover, AF/F can, in theory, report only
spike rate changes. Nevertheless, we found that absolute spike
rates can be inferred when the baseline activity is sufficiently
sparse to enable the determination of the fluorescence baseline
level F,, which was the case in all datasets examined here (Figs.
5 and 6). The enhanced temporal resolution will be particularly
useful for the analysis of neuronal activity during natural stimulus
sequences and behaviors that occur on time scales shorter than
typical durations of calcium transients, such as dynamical neuro-
nal representations across theta cycles™ or early and late phases of
sensory responses in cortical areas™. Moreover, the inference of
absolute spike rates will help improve the calibration of precisely
patterned optogenetic manipulations®** and the extraction of
constraints—for example, absolute spike rates—for computational
models of neural circuits.

The reliability of spike inference obviously depends on the
recording quality of the calcium imaging data. Future work should,
thus, focus on the reduction of movement artifacts and neuropil con-
tamination both by experimental design'**® and by extraction meth-
ods**¥, including the correct estimation of the F, baseline despite
unknown background fluorescence. In the long term, the develop-
ment of more linear calcium indicators®” and especially the acquisi-
tion and integration of more specific ground truth—for example, for
additional interneurons and subcortical brain regions—will enable
quantitative spike inference for an even broader set of experimental
conditions. We envision that our set of ground truth recordings will
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become enlarged over time, allowing to train more and more spe-
cific models for reliable inference of spike rates.
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Methods

Ground truth recordings in adult zebrafish. All zebrafish experiments were
approved by the Veterinary Department of the Canton Basel-Stadt (Switzerland).

For the recordings in DS #04 and DS #05, the adult zebrafish brain was dissected ex
vivo’, and OBG-1 AM or Cal-520 AM were injected in pDp as described™. The dura
mater above pDp was carefully removed to prevent clogging of the patch pipette.
Calcium indicators were injected for 1-2 min at two locations (injection 1: ~210 pm
dorsal from the ventralmost aspect of Dp and ~130 pm from the lateral surface of
Dp; injection 2: 180 pm and 60 pm, respectively) and was monitored by snapshot
multi-photon images. The pressure was adjusted to avoid fast swelling of the tissue.

Juxtacellular recordings were performed >1h and <4h after the dye injection.
Patch pipettes were pulled from 1-mm borosilicate glass capillaries (Hilgenberg)
with a resistance of 5-8 MQ and backfilled with artificial cerebrospinal fluid (ACSF)
(in mM: 124 NaCl, 2 KCl, 1.25 KH,PO,, 1.6 MgSO,, 22 D-(+)-glucose, 2 CaCl,,

24 NaHCO;; pH 7.2; 300-310 mOsm) containing 0.05 mM Alexa Fluor 594.

The explant preparation was rotated about the anterior—posterior axis to
allow for optical access from the side (sagittal imaging). Using a multi-photon
microscope, images generated from fluorescence and from the asymmetry of the
signal on a four-quadrant detector for transmitted light were used to target the
pipette to pDp, while continuous low pressure (30-40 mbar) was applied to prevent
clogging. The pipette then entered the tissue with initial high pressure (90-110 mbar)
that was lowered after a few seconds. Neurons were approached using the
shadow-patching technique'>** but with lower pressure. Juxtacellular recordings
were performed after establishing a loose seal (typically 30-50 MQ) with a target
neuron. In some cases, a small negative pressure was applied initially to improve
the electrical contact with the target cell. In several cases, micropipettes were
reused multiple times. Recordings were performed in voltage-clamp mode with the
voltage adjusted such that the resulting current approximated zero®.

For DSs #06-08, which were based on a transgenic line expressing GCaMP6f in
the forebrain®, the experimental procedures were similar except for the injection
of synthetic dyes. Because the baseline brightness of GCaMPéf is low, it was
often difficult to identify individual neurons. Upon application of odor stimuli,
stimulus-responsive neurons that expressed GCaMP6f became brighter, which
permitted reliable visual identification for targeted patching. For regions in the
dorsal telencephalon (DS #07) with no obvious odor responses, cells were patched
randomly based on shadow images generated by the blown-out Alexa dye™.

Simultaneous recordings of fluorescence and extracellular spikes of the same
neuron were synchronized using ScanImage 3.8 for imaging®' and Ephus for
electrophysiology®. Calcium imaging was performed at intermediate zoom (Fig. 1)
with a frame rate of 7.5 Hz or 7.8125 Hz for DS #04 and DS #05 and at high zoom
with a framerate of 30 Hz for DSs #06-08. Electrophysiological recordings were
low-pass filtered at 4kHz (4-pole Bessel filter) and sampled at 10 kHz.

Recordings were performed in 120-s episodes, and food extract was applied to
the nose as described*. In pDp, spike rates are usually very low. When no spiking
activity was observed, the holding potential of the pipette was set to higher values
(between+5 mV and +30mV) to generate a depolarizing extracellular current that
generated spikes if the seal resistance was sufficiently high. If no spikes could be
elicited over the full duration of the recording, the recording was not included in
the ground truth dataset.

Anatomical location in zebrafish ground truth datasets. DS #04: OGB-1,
injected in the posterior part of the olfactory cortex homolog (pDp) in

adult zebrafish. Recordings were performed throughout dorsal and ventral
compartments of pDp, and OGB-1 was injected as described™. Because OGB-1
localizes predominantly to the nucleus and because the resolution was high,
neuropil contamination is negligible in this dataset.

DS #05: Cal-520, injected in the posterior part of the olfactory cortex homolog
(pDp) in adult zebrafish. Same brain region as DS #03. Unlike OGB-1, Cal-520 is
primarily cytoplasmic, resulting in considerable neuropil contamination. Cal-520
spread less than OGB-1 after injection and labelled only a small central volume
in pDp.

DS #06: tg(NeuroD:GCaMP6f), anterior part of the olfactory cortex homolog
(aDp) in adult zebrafish. In this transgenic line, GCaMP6f is strongly expressed
throughout Dp. Recording location and frame rate were chosen to match previous
experiments®.

DS #07: tg(NeuroD:GCaMP6f), dorsal part of the dorsal pallium in adult
zebrafish. All recorded neurons were mapped onto brain regions Dm, DI, rDc
and cDc based on neuroD expression in the dorsal part of the dorsal pallium
(Supplementary Fig. 13, following Huang et al.®). Although this region is not
known to be directly involved in olfactory processing, we noticed that several
neurons were inhibited during odor stimulation (duration, 10-30s).

DS #08: tg(NeuroD), olfactory bulb (OB) in adult zebrafish. In the OB of this
transgenic line, GCaMP6f is restricted to a distinct, small subset of putative mitral
cells and interneurons®. Neurons 1-3, 5 and 7 were identified as interneurons
based on their small size and morphology, whereas neurons 4, 6, 8 and 9 were
classified as putative mitral cells.

Ground truth recordings in anaesthetized mice. All experimental procedures
related to DS #18 and DS #19 were approved by the Cantonal Veterinary Office

in Zurich (Switzerland). Mice were kept on a reversed 12-h light/dark cycle. For
virus-induced expression of R-CaMP1.07 (DS #19), AAV1-EFa1-R-CaMP1.07

and AAV1-EFal-DIO-R-CaMP1.07 were stereotactically injected under isoflurane
anaesthesia into the barrel cortex of C57BL/6] mice and into hippocampal area
CA3 of tg(Grik4-cre)G32-4Stl mice as described”. We combined electrophysiology
and calcium imaging in acute experiments in anaesthetized animals (n=3; at least
2 weeks after virus injection) as described™. A stainless steel plate was fixed to the
exposed skull using dental acrylic cement. A 1X 1 mm? craniotomy was made over
the barrel cortex. The dura mater was cleaned with Ringer’s solution (containing

in mM: 135 NaCl, 5.4 KCl, 1.8 CaCl,, 5 HEPES, pH 7.2 with NaOH) and carefully
removed. To reduce tissue motion caused by heartbeat and breathing, the
craniotomy was filled with low-concentration agarose gel and gently pressed with

a glass coverslip. For CA3 recordings (DS #18), a 4-mm @ craniotomy was centred
over the injection site. The overlying cortex was aspirated until the corpus callosum
became visible. The cavity was filled with 1% agarose to reduce tissue motion.
Juxtacellular recordings from R-CaMP1.07-expressing neurons were obtained

with glass pipettes (4-6 MQ tip resistance) containing Ringer’s solution. For
pipette visualization, Alexa Fluor 488 (Invitrogen) was added to the solution, or
pipettes were coated with BSA Alexa Fluor 594 (Invitrogen). Action potentials were
recorded in current-clamp using an Axoclamp 2B amplifier (Axon Instruments,
Molecular Devices) and digitized at 10 kHz using Clampex 10.2 software. Calcium
recordings were performed using HelioScan®.

The care of animals and experimental procedures related to DS #03 were
carried out in accordance with national and institutional guidelines, and all
experimental protocols were approved by the Animal Experimental Committee
of the University of Tokyo. Mice were kept in a non-inverted 12-h light/dark
cycle. Ambient temperature and humidity of the animal room were controlled at
20-25°C and 40-60%, respectively. C57BL6/] male mice were anaesthetized by
intraperitoneal injection of 1.9 mg g~! urethane, and the skull was partly exposed
and attached to a stainless steel frame as described”’. In a small craniotomy over
the barrel cortex, we removed the dura, filled the cranial window with 1.5%
agarose and placed a coverslip over the agarose to minimize brain movements®.
Cal-520 AM together with an Alexa dye were bolus-loaded in layer 2/3 of the
barrel cortex (200-300 pm deep below the surface) and monitored by two-photon
imaging on the Alexa channel”’. Calcium imaging was performed more than
30min after dye ejection. For simultaneous calcium imaging and loose-seal
cell-attached recordings, we filled glass pipettes (5-7 MQ) with the extracellular
solution containing Alexa Fluor 594 (50 pM), inserted pipettes into the barrel
and targeted Cal-520-loaded somata. Approximately 10 min after establishing the
loose-seal cell-attached configuration, we performed simultaneous recordings and
high-speed line-scan calcium imaging (500 Hz) on the soma of cortical neurons as
described”. The electrophysiological data were filtered at 10kHz and digitized at
20kHz by using MultiClamp 700B and DigiData 1322A (Molecular Devices) and
acquired using AxoGraph X (AxoGraph).

Experiments for DSs #24-27 were approved by the Veterinary Department
of the Canton Basel-Stadt (Switzerland). Mice were kept on an inverted light
cycle. DSs #24-26 were recorded in slices of mouse visual cortex as described™.
Inhibitory neurons were targeted by injecting GCaMP6f-expressing AAV1 virus
into PV-Cre, VIP-Cre or SOM-Cre mice. Coronal slices were cut with a thickness
of 350 um, and loose-patch recordings were performed at 32°C in ACSF with
WinWCP software (John Dempster). To induce activity in otherwise quiet slices,

a potassium-based solution was applied to the slice through a second pipette.
Simultaneous calcium imaging was performed with a two-photon microscope
recording at 34 Hz through a X16 water immersion objective (0.8 NA, Nikon)?.
DS #27 was recorded in anaesthetized mice as described®. Adult (>8 weeks)
PV-tdTomato mice (cross between Rosa-CAG- LSL-tdTomato (JAX: 007914) and
PV-Cre (JAX: 008069)) were injected with GCaMP6{-AAV (AAV1.Syn.GCaMP6f.
WPRE.SV40, UPENN) in primary visual cortex (V1, ~2.5mm lateral, ~0.7 mm
anterior of the posterior suture). Acute recordings were performed at least 2

weeks after the initial injection. Mice were initially anaesthetized with a mixture
of fentanyl (0.05mg ml~!), midazolam (5.0 mg kg~') and medetomidin (0.5 mg
kg™'); a metal headplate was fixed on the skull; and a craniotomy was made above
V1. Anaesthesia was maintained with a low concentration of isoflurane (0.5% in
O,). Borosilicate glass pipettes (6-8 M) filled with a solution containing 110 mM
potassium gluconate, 4 mM NaCl, 40 mM HEPES, 2mM ATP-Mg, 0.3 mM
GTP-NaCl and 0.03 mM Alexa Fluor 594 (adjusted to pH 7.2 with KOH, ~290
mOSM) were lowered into the visual cortex. Neurons expressing GCaMP6f and
tdTomato were targeted for juxtacellular recordings in loose-cell configuration
under a two-photon microscope. For simultaneous electrophysiological and optical
recordings, fluorescence was recorded with ScanImage® at 30 Hz, and juxtacellular
voltage was recorded using a MultiClamp 700B amplifier (Axon Instruments).
Signals recorded in slices were filtered at 1 kHz or 2kHz, and signals recorded

in vivo were filtered at 10 kHz before digitization at 20 kHz (National Instruments).
50-Hz noise was reduced by a noise eliminator (HumBug).

All experimental procedures for DS #02, DS #22 and DS #23 were performed
in accordance with National Institutes of Health guidelines and approved by the
Animal Care and Use Committee at the University of California, Berkeley. Mice
were kept on a non-reversed 12-h light/dark cycle. These datasets were recorded
in mouse primary visual cortex as described”. GFP-GIN mice were used to target
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SOM interneurons; PV-Cre mice crossed with loxP-flanked tdTomato reporter
mice were used to target PV interneurons; and CaMKIIa-Cre mice crossed with
loxP-flanked tdTomato mice were used to target excitatory neurons. One hour
after loading of OGB-1 into V1 (ref. *°), two-photon microscopy was used to
target neurons 150-300 um below the brain surface with the recording pipette,
while the mouse was anaesthetized with intraperitoneal injection of urethane
and chlorprothixene. Two-photon imaging of neurons was performed with a x40
objective at a frame rate of 15.6 Hz, while voltage was recorded in a loose-cell
configuration from the same neuron as described”.

Analysis of ground truth recordings. Movies of calcium indicator fluorescence
were corrected offline for movement artifacts (slow drifts due to relaxation of the
brain tissue for zebrafish data; fast movements for recordings in anaesthetized
mice). Ground truth recordings from DS #03 were not corrected for movement
artifacts due to the scanning modality (line-scan). Thereafter, ROIs were manually
drawn using a custom-written software tool (https://git.io/vAeKZ)* for each trial
to select pixels that reflected the calcium activity of the neuron. Fluorescence traces
were extracted either as average across the ROI or individually for each pixel to
allow for both natural and artificial sub-sampling of calcium signal noise levels
(Supplementary Fig. 2).

Spike times were extracted from juxtacellular recordings using a
custom-written template-matching algorithm. In brief, peaks of the first derivative
of a 1-kHz filtered electrophysiological signal were detected using a threshold that
differed between recordings and that was manually adjusted to safely exclude false
positives. The original waveforms of the detected events were then averaged and
used in a second step as a template to detect all events across the full recording
more precisely via cross-correlation of the template with the original signal. A
manually adjusted threshold for each neuron extracted action potential events. The
process of first generating a template that was afterwards used to detect stereotypic
signals increased the signal-to-noise of detected events, similarly to previous usages
of template matching in electrophysiology**".

Quality control. All electrical spiking events were inspected visually and
compared to simultaneously recorded calcium transients. Any recordings

that were ambiguous due to low electrophysiological signal-to-noise of action
potentials were discarded. Calcium recordings with excessive movement
artifacts or apparent inconsistencies of juxtacellular and calcium recordings were
discarded entirely. Excessive movement artifacts were defined as events when the
neuron visibly moved out of the imaging plane, such that transients generated

by these movements were almost as frequent and prominent as true calcium
transients. Apparent inconsistencies of recordings were identified as recordings
where no spike events corresponded to visible calcium transients and where a
spike-triggered average (Extended Data Fig. 1) did not show any signal, indicating
that juxtacellular and calcium recordings were performed from different neurons.
In addition, neurons were discarded when they did not spike at all even after
application of currents or when they became visibly brighter after establishing
aloose seal due to unknown, possibly mechanical, reasons. When the calcium
recording clearly contained events without corresponding electrophysiological
action potentials, the calcium trace of the manually drawn ROI and the calcium
traces of adjacent neurons or neuropil were inspected together with the
electrophysiological recordings to assess optical bleed-through, and ROIs were
adjusted if necessary to avoid contamination. Occasionally, we also noted that
mechanical stress exerted by the recording pipette can increase the brightness

of the recorded neuron®, possibly by the release of calcium from internal stores.
Recordings made during and after such events were discarded. Bursting can lead
to adaptation of the extracellularly measured spike amplitude. Such recordings
(for example, in DS #18 with bursts of more than ten action potentials with an
inter-spike interval of approximately 5 ms) were carefully inspected for missed
low-amplitude action potentials, in particular during these bursts.

Extraction of ground truth from publicly available datasets. Additional ground
truth was extracted from publicly available datasets and quality controlled for each
neuron](»,l‘?,;(\,}lfﬁ \.

The Allen Institute datasets. For DSs #10-13 from ref. °, raw fluorescence traces
were extracted from the processed datasets, which were downloaded from https://
portal.brain-map.org/explore/circuits/oephys. Neuropil signal was subtracted using
the same standard scaling value for all neurons to make recordings comparable
with other datasets (neuropil contamination ratio, 0.7), despite the caveats
associated with this procedure®. A 6-s running 10% lowest percentile window
was typically used to compute F, for AF/F, calculation, but percentile values were
adjusted to the noisiness of the recording and over window durations that were
adjusted to the baseline activity. Simultaneous juxtacellular and calcium imaging
recordings were inspected for each ground truth neuron together with the raw
movie as described in the Methods subsection ‘Quality control’

The Spikefinder datasets. For DS #01, DS #15 and DS #16 from ref. "%, the ground

truth recordings at their native sampling rates as released during the Spikefinder
challenge'® were processed. This Spikefinder dataset consists of five separate
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datasets. Spikefinder datasets #1 and #4 were excluded because fluorescence
baseline and scaling were unknown. The other datasets were extracted as
fluorescence traces, and F, was computed as the 10th percentile value (adjusted
depending on the spike rate of each neuron) and used to compute AF/F,. Some
ground truth neurons were discarded due to a highly unstable fluorescence
baseline, but no strict quality control was possible because the raw calcium imaging
data were not available. As found previously, some datasets of the Spikefinder
challenge come with calcium recordings that are delayed with respect to the
electrophysiological recordings'®. We, therefore, manually corrected for delays of
the calcium recording with respect to the electrophysiological recording based on
visual alignment of extracted linear kernels. The same correction delay was applied
across all neurons of a given dataset.

The GENIE datasets. DS #09, DS #014, DS #017, DS #20 and DS #21 were
downloaded from http://crcns.org/data-sets/methods™=***®, For DS #09 and DS
#14 (ref. *'), ROIs were extracted from raw calcium imaging data using the same
approach as described above for R-CaMP1.07 data. Recordings with excessive
movement artifacts or apparent inconsistencies of juxtacellular and calcium
recordings were discarded entirely. Neuropil signal was subtracted using the same
standard scaling value for all neurons (neuropil contamination ratio, 0.7)*. F,
values were computed using percentile values that were adjusted to the noisiness
of the recording and over window durations that were adjusted to the baseline
activity.

For DS #17, DS #20 and DS #21, no raw calcium imaging data were available,
therefore not allowing for strict quality control using raw calcium recordings as
additional feedback. Neuropil signal was subtracted from raw fluorescence using
the same standard scaling value for all neurons (neuropil contamination ratio,
0.7)*>*. F, values were computed using percentile values that were adjusted to
the noisiness of the recording and over window durations that were adjusted to
baseline activity.

Population calcium imaging with OGB-1 in zebrafish pDp. Ex vivo preparations,
OGB-1 AM injections and calcium imaging were performed as described for
juxtacellular recordings. Calcium imaging was performed using a custom-built,
multi-plane, multi-photon microscope based on a voice coil motor for fast
z-scanning®. Laser power below the objective was 29-35mW (central wavelength,
930 nm; temporal pulse width below the objective, 180fs), with higher laser power
for deeper imaging planes.

Imaging in Dp was performed in eight planes (256 X 512 pixels, approximately
100200 um) at 7.5 Hz over a z-range of approximately 100 um. Due to slowly
relaxing brain tissue, movement correction was applied every 5min by acquiring
local z-stacks with a z-range of +6 um. The maximum cross-correlation between a
reference stack acquired before the experiment and the local z-stack indicated the
optimal positioning, which was targeted using the stage motors of the microscope.

For odor stimulation, amino acids (His, Ser, Ala and Trp, Sigma-Aldrich) were
diluted to a final concentration of 10~ M, and bile acid (TDCA, Sigma-Aldrich)
was diluted to 10~ M in ACSF immediately before the experiment. Food extract
was prepared as described”. Odors were applied for 10s through a constant stream
of ACSF using a computer-controlled peristaltic pump* in pseudo-random order
with three repetitions of each odor presentation.

Extraction of linear kernels from ground truth data. Linear kernels were
extracted by regularized deconvolution using the deconvreg(Calcium,Spikes)
function in MATLAB (MathWorks). This function computes the kernel, which,
when convolved with the observed Spikes, results in the best approximation of the
Calcium trace.

To compute the variability of linear kernels across neurons within and across
datasets (Extended Data Fig. 1), we split the ground truth recording of each neuron
in five separate parts and computed the linear kernels for each of the segments
separately. When the coefficient of variation across these five values was less
than 0.5, the kernel amplitude was considered reliable and included in the plots
(Extended Data Fig. 1).

Computation of noise levels. In the shot noise limited case, the mean fluorescence
F, scales with N, which is the number of photons collected by the detector

per second, and the fluorescence baseline fluctuations o scale with \/ N. Thus,

the AF/F baseline noise 6= o,/F, scales with 1/ \/ N. If the fluorescence signal

is sampled at frame rate f, and the number of photons collected per frame reduces
to N/f,, thus o, scales with \/ 'f.. To define a noise measure that is independent of
frame rate, we, therefore, normalized 6, for this shot noise effect and defined the
standardized noise v as:

OAFF Median; |AF/F;41 — AF/F|
V= = (1)
Vi Vi

The units for v are %-Hz"2, which, for the purpose of readability, we omit in
the text. When computed for AF/F data in this way, v is quantitatively comparable
across datasets. A value of v=1 indicates a very low noise level, whereas v =38
indicates a high noise level, independent of frame rate.
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Metrics to quantify performance of spike inference. The ground truth spike rates
were generated from discrete spikes by convolution with a Gaussian smoothing
kernel (except in Supplementary Fig. 12, where a non-Gaussian, causal kernel was
applied). The precision of the ground truth was adjusted by tuning the standard
deviation of the smoothing Gaussian (6=0.2s for 7.5-Hz recordings and 6=0.05s
for 30-Hz recordings). The ground truth spike rate was then compared to the
inferred spike rate.

There is no single metric to reliably reflect the goodness of performance of
a spike inference algorithm. Correlation between the inferred spike rate and the
ground truth is widely used'® but does not contain information about absolute
scaling or offsets. F; scores combine false positives and false negatives'’ but are
difficult to compare across datasets when the baseline spike rates vary (which
is the case for our database). Other metrics try to combine the strengths of the
correlation measure with a sensitivity to the correct number of spikes™ but are less
intuitive.

We defined three intuitive and complementary metrics (illustrated as
color-coded equations in Supplementary Fig. 3). First, we used Pearson’s
correlation between ground truth spike rates and inferred spike rates as a standard
measure of the similarity. Second, the relative error (abbreviated as error) results
from the sum of false positives and false negatives when subtracting the ground
truth from the inferred spike rate, normalized by the absolute number of spikes in
the ground truth. For example, an error of 0.7 would indicate that the number of
either incorrectly inferred or omitted spikes is about 70% of the number of spikes
in the ground truth. Third, the (relative) bias is defined as the difference of false
positives and false negatives, again normalized by the absolute number of spikes
in the ground truth. Algorithms that systematically underestimate spike rates will
tend toward the minimum of the bias, —1, whereas other algorithms might tend to
systematically overestimate spike occurrences (bias >0). Importantly, the error can
be very high when the number of false positives and false negatives is high, but the
bias might still be zero. Error and bias are, therefore, two metrics that describe the
absolute errors in terms of spike rates, complementing the correlation metric.

Architecture of the default convolutional network. The default network consists
of a standard convolutional network with six hidden layers, including three
convolutional layers. The input consists of a window of 64 time points symmetric
around the time point for which the inference is made. The three convolutional
layers have relatively large but decreasing filter sizes (31, 19 and 5 time points),
with an increasing number of features (20, 30 and 40 filters per layer). After the
second and third layer, maximum pooling layers are inserted. A final densely
connected hidden layer consisting of ten neurons relays the result to a single output
neuron. Although all neurons in hidden layers are based on ReLUs, the output
neuron is based on a linear identity transfer function. In total, the model consists
of 18,541 trainable parameters.

The properties of the calcium imaging data are accounted for by resampling
the ground truth with the appropriate noise levels and the matching frame rate.
The ground truth is smoothed to facilitate gradient descent with a time-symmetric
Gaussian kernel of standard deviation 0.2's for resampling at 7.5 Hz (unless
otherwise indicated), and 0.05 s for 30 Hz, or with a causal kernel (inverse Gaussian
distribution).

Training deep networks for spike inference. To train the deep networks, the

mean squared error between the smoothed ground truth spike rates and inferred

spike rates was used as the loss function. This loss function optimizes not only

the similarity of both signals (correlation) but also the absolute magnitude of the

inferred spike rates. Based on errors computed via back-propagation, gradient

descent was performed using a standard optimizer (adagrad; Supplementary Fig.

4). Based on a given resampled ground truth dataset, the network was trained using

every single data point from this set, completing an epoch. Typically, training lasted

for 10-20 epochs (except when analyzing overfitting; Supplementary Figs. 4 and 5).
In all spike inferences presented here, without exception, a leave-one-out

strategy was employed. For example, to infer the spike rates of a given neuron

in a dataset, the network was trained on all neurons of this dataset except the

neuron of interest. To infer spike rates for a given set of datasets, the training

set always excluded the dataset for which inferences were made. This strategy

of cross-validation is crucial and strictly distinct from the process of fitting

parameters for a neuron or a dataset, which would yield better results for a given

neuron but would fail to generalize to new data.

Architecture of alternative deep learning networks. All deep learning
architectures (Supplementary Fig. 5) were trained with the same loss function, the
same input and the same optimizer as the default network.

Small convolutional filters network: same architecture as the default network,
with the only difference that smaller convolutional filter sizes were used (15, 9 and
3) instead of (31, 19 and 5). Total of 9,891 trainable parameters.

Single convolutional layer network: the first convolutional layer of the default
network, a single max pooling layer and a single dense layer of ten neurons. Total
of 1,021 trainable parameters.

Deeper convolutional network (five convolutional neural network (CNN)
layers): five convolutional layers with filter sizes (11, 9, 7, 5 and 3) and filter

numbers (20, 30, 40, 40 and 40), three max pooling layers after the second, fourth
and fifth convolutional layers and a final dense layer expansion of ten neurons.
The reduction of the filter sizes compared to the default network is necessary
because no zero-padding was applied, resulting in a decrease of the size of the
one-dimensional trace with increasing layer depth. Total of 27,421 trainable
parameters.

Deeper convolutional network (seven CNN layers): seven convolutional layers
with filter sizes (7, 6, 5, 4, 3, 3 and 3) and filter numbers (20, 30, 40, 40, 40, 40 and
40), three max pooling layers after the second, fifth and seventh convolutional
layers and a final dense layer expansion of ten neurons. Total of 31,221 trainable
parameters.

Batch normalization: same as the default network with batch normalization™
for regularization after each convolutional and dense layer but before the
respective ReLU transfer functions of each network layer. Total of 18,741 trainable
parameters.

Locally connected network: same as the default network but with locally
connected filters instead of convolutional filters. For convolutional filters, filter
weights are shared across each position in the image space (here, in the temporal
window), whereas the filters are different for each position for locally connected
networks. The rationale behind this architecture is that different filters can be
learned for each position, which is intuitive given that spike detection is not
invariant to the position of the calcium transient in the window. Using different
weights for each position of the filter sets results in a total of 229,231 trainable
parameters.

Naive LSTM model: LSTM units are complex neuronal units with internal
states and gates that are used in recurrent networks to overcome the problem of
vanishing gradients when back-propagating through time’>”*. The time points
of the input window are sequentially fed into the recurrent network, which are
processed by the recurrent network, with earlier time points retained through
recurrent activity or LSTM states and used to activate the network for processing of
later time points. The investigated model consisted of two layers of each 25 LSTM
units with ReLU as activation functions, followed by a simple dense expansion
layer of 50 neurons with ReLU activation functions. Total of 4,051 trainable
parameters.

Bi-directional LSTM model: the time points of the input window (64 data
points) are split into past (32 data points) and future (32 data points) with respect
to the time point used for spike inference (‘presence’). Past and a reversed version
of the future are each fed into a recurrent network based on a single layer of 25
LSTM units (with ReLU activations), such that the time point closest to ‘presence’
is fed in last”>”. The output of the two recurrent networks for past and future is
concatenated and connected with a dense fully connected layer of 50 simple units
(ReLU activations). Total of 8,001 trainable parameters.

Linear network: same as the default network but with linear activation
functions instead of ReLUs. The network is, therefore, entirely linear but based on
the same architecture (connectivity). Total of 18,541 trainable parameters.

Discretization of spiking probabilities. To obtain discrete spiking events from
inferred probabilities, a brute-force fitting procedure was applied. The Gaussian
kernel used to smooth the ground truth was used as a prior for the inferred spike
rate that corresponds to a single action potential. The fit, therefore, consisted of
optimally fitting a set of Gaussian kernels of the expected width and height to

the inferred spike rate. We made a first guess that was then optimized by random
modifications. The first guess was generated using Monte Carlo importance
sampling, such that the overall number of discrete spikes matched the integral of
inferred probabilities. Next, events were ranked in how they contributed to the

fit by comparing the fit quality when single events were omitted. Lowest-ranking
events were discarded and replaced by newly drawn events, again using importance
sampling based on the residual probability distribution. Finally, each spike

was shifted randomly over the entire duration, and the best fit was used. This
approach is relatively slow but results in a reliable fit. To speed up the procedure,
spiking probabilities were divided in continuous sequences of non-zero support
(divide-and-conquer strategy). For Supplementary Fig. 7 and to allow for
comparison against raw inferred spike rates, the resulting discrete spikes were
convolved with the Gaussian smoothing kernel that was used to generate the
ground truth. We provide a demo script that infers discrete spikes from spike rates
predicted with CASCADE (available on GitHub: https://git.io/JtZe4).

Generalized linear model to fit predictability across datasets. To predict how
well a model trained on a given ground truth dataset (for example, DS #08) is
able to infer activity for another dataset (for example, DS #14), a set of descriptors
(regressors) was extracted for each dataset, and a generalized linear model
(GLM) was trained to predict this relationship based on the regressors of the two
respective datasets (Supplementary Fig. 9). In total, eight predictors were used,
separately or together.

First, indicator species was set to 1 if the training and test datasets had the same
indicator species (synthetic dyes versus genetically encoded dyes) and 0 otherwise.
Animal species was set to 1 if the training and test datasets had the same animal
species (zebrafish versus mouse) and 0 otherwise. Spike rate was computed as the
absolute difference between median spike rates across neurons from the training
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and test datasets. Burstiness was computed as the number of spikes that were spike
within 50 ms of the timing of a given spike. This metric quantifies the likelihood
that a given spike is surrounded by other spikes. The Fano factor was computed by
dividing the variance of inter-spike-intervals (ISIs) by the mean of ISIs”*. Measured
Fano factors were broadly distributed across datasets with a median of 3.7 and a
standard deviation of 5.9 and an outlier dataset, DS #18, in mouse CA3 with a Fano
factor of 30.0. The area of the linear kernel was computed by summing up the area
under the curve for the extracted linear kernel for each dataset. The kernel decay
constant was computed without exponential fit by measuring the time between rise
and decay time of the kernel directly. Rise and decay time points were identified by
finding the first and last time point where the kernel surpassed 1/e of its maximum
amplitude. The correlation time course was computed as the correlation between
the kernels of training and test dataset.

The GLM was fitted based on these regressors using the glmfit() command in
MATLAB with an identity linker function.

Artificial ground truth generated with NAOMi. The package NAOMi was used
to generate simulated two-photon calcium recordings of neurons with known
spike patterns™. These simulated datasets were used as ground truth to train
CASCADE (Fig. 3) but also to test the effect of spike inference with CASCADE

on the estimated pairwise correlations between neurons (Supplementary Fig. 11).
We used the default parameters, which had been optimized for the simulation of
GCaMPé6f based on previous calibrations®. Artificial ground truth was generated
at 30 Hz with a detection NA of 0.6 and an excitation NA of 0.8 at a depth of

100 um below the cortical surface, in a volume of 250 X 250 X 100 um®. To increase
the signal-to-noise ratio of the simulated recordings, we used a relatively high
simulated laser power of 70 mW. We simulated recordings of the central plane of
five such volumes over a duration of 166s. We extracted the cleanest components
of each simulation by selecting the spatial components (from the ideal components
returned by NAOMi) that correlated most highly with the known ground truth
signals (correlation with a known somatic ground truth signal >0.80). We chose to
only include the best-matching components because other components typically
had much stronger neuropil contamination than our experimentally obtained
ground truth recordings. Then, we extracted the fluorescence of the selected
components and performed neuropil subtraction with a 2-pixel ring around the
detected component using a factor of 0.45 for neuropil subtraction. Afterwards, we
computed the AF/F signal, using the 2nd percentile across the entire recording to
determine F,. This procedure resulted in ground truth recordings from a total of
250 simulated neurons.

Adaptation of model-based spike inference algorithms. The MLSpike algorithm'?
was downloaded from https://github.com/MLspike/spikes and used in MATLAB
2017a. Parameter settings were manually explored for several datasets using the
graphical demo user interface. Then, some parameters (noise level sigma and
inverse frame rate dt) were fixed to the values constrained by the ground truth. The
drift parameter was set to 0.1. For synthetic dyes (DSs #01-05 and DS #22 and DS
#23), a saturating non-linearity (saturation =0.01) was used, whereas, for all other
datasets, a GCaMP-like non-linearity (pnonlin= (1.0 0.0)) was defined and kept
the same across datasets, because predictions have been described to depend only
slightly on the precise values of the non-linearity'”. Based on manual exploration,
the two parameters tau (decay time constant) and amplitude (amplitude of a single
action potential) were explored in a grid search for all ground truth datasets and
all noise levels separately. The grid search ranged from 0.1s to 5s for tau and from
0.01 to 0.35 for amplitude.

The Peeling algorithm'' was downloaded from https://github.com/
HelmchenLab/CalciumSim and used in MATLAB 2017a. A single-exponential
linear model with default values was used. A grid search was performed over
two parameters for all ground truth datasets: time constant of the exponential
decay (taul) and the amplitude of a single spike (amp1). Grid search ranged from
0.25s to 5s for taul and from 2.5 to 35 for amp1. Discrete spike predictions were
convolved with a Gaussian kernel such that the resulting trace optimized the loss
function (mean squared error between predictions and ground truth).

The Python implementation of the L,-regularized OASIS algorithm in
CalmAn" was downloaded from https://github.com/j-friedrich/OASIS and used
in Python 3.7. The constrained version of OASIS was used to reduce the number
of free parameters, with only one single free parameter, g, that relates to the
exponential time fluorescence decay constant 7 with the frame rate f: g=e~%. Grid
search was performed for g in the range between 0.02 and 0.98, with a granularity
of 0.02.

The Python implementation of the FastLOSpikeInference algorithm*
(Jewell&Witten) was downloaded from https://github.com/jewellsean/
FastLZeroSpikelnference and used in Python 3.7. A grid search was performed
over two parameters for all ground truth datasets. Optimization was performed
between 0.10 and 0.95 for the decay constant parameter gamma and between
0.0001 and 0.75 for the L, parameter penalty. Discrete spike predictions were
convolved with a Gaussian kernel such that the resulting trace optimized the loss
function (mean squared error between predictions and ground truth).

The Python implementation of the OASIS algorithm in Suite2p*' was
downloaded from https://github.com/MouseLand/suite2p and used in Python 3.7.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

RESOURCE

Of three tunable parameters (tau, sig_baseline and win_baseline), only the first two
significantly affected the performance of the algorithm in our hands. win_baseline
was set to 150 for all analyses. A grid search was performed over the two remaining
parameters for all ground truth datasets. Optimization was performed between 0.5
and 3 for the decay time constant parameter tau and between 2.5 and 20 for the
parameter sig_baseline.

The optimal parameters resulting from the grid searches, which optimized the
mean squared error between ground truth and inferred spike rates, are listed in
Supplementary Table 1 and provided via GitHub (https://git.io/JtZe0). In addition
to these parameters, we further used Gaussian smoothing kernels of variable
standard deviation to find the amount of smoothing for each algorithm and dataset
that optimized the mean squared error. Finally, to compensate for the propensity of
several model-based algorithms to infer spike rates with a temporal lag compared
to ground truth spike rates, we tested time shifts between —1 s and +1s and used
the value that optimized the mean squared error for a given dataset to evaluate the
algorithm in our analyses.

Computational cost of spike inference. The six investigated algorithms exhibit
different behaviors when scaling up the length of the calcium traces. For
example, MLSpike and Peeling suffer from supra-linear cost when the duration
of an analyzed calcium trace is increased, whereas CASCADE shows the
opposite behavior due to its capability to parallelize spike inference. Therefore,
all 26 full ground truth datasets, resampled at a noise level of 2 and a frame rate
of 7.5Hz, were used as a benchmark, consisting of recordings ranging from 10's
of seconds up to several minutes. Processing time was averaged across all data
points from all datasets. The time required to load the data from hard disk was
not included. For CASCADE, the time for pre-processing the raw calcium data
to generate a 64-point-wide segment for each time point was included in the
benchmarking.

Unsupervised sequence extraction using seqNMF. The MATLAB-based toolbox
seqNMF was used to extract temporal patterns for Fig. 5 in an unsupervised
fashion®. Based on initial parameter exploration, we used the following settings:
K=7,L=20 and A=0.002. K indicates the number of extracted patterns, L
indicates the number of time points for each pattern and A serves as a regularizer to
decorrelate the detected patterns®. The results of this unsupervised non-negative
matrix factorization approach are K="7 temporal patterns that are each of them
associated with a temporal loading that indicates when the temporal pattern
became active. The temporal patterns and the temporal loadings provide
low-complexity factors that break down the more complex population dynamics
(Fig. 5).

Allen Brain Observatory data. The complete calcium imaging data of the

Allen Brain Observatory Visual Coding dataset were downloaded from http://
observatory.brain-map.org/visualcoding via the AllenSDK with a Python interface.
Layers were assigned based on imaging depth as described”’. Imaging depth,
transgenic lines, cortical areas and fluorescence traces were extracted from

NWSB files. For analysis, neuropil-corrected calcium traces from the Allen Brain
Observatory dataset were used. Because all recordings were performed at an
imaging rate of approximately 30 Hz, a single set of CASCADE models (‘global
EXC model‘ at 30 Hz; Fig. 3a) was used to predict spiking activity.

Statistical tests and box plots. Statistical analysis was performed in MATLAB
2017a and R. Only non-parametric tests were used. The Mann-Whitney rank-sum
test was used for non-paired samples (for example, comparison across datasets),
and the Wilcoxon signed-rank test was used for paired samples (for example,
comparison of predictions for the same set of neurons using two different
algorithms). Two-sided tests were applied unless noted otherwise. Effect sizes

A =+ confidence interval (CI) (pseudo-median A and 95% CIs unless otherwise
indicated) were computed in R. Box plots used standard settings in MATLAB,
with the central line at the median of the distribution, the box at the 25th and 75th
percentiles and the whiskers at extreme values excluding outliers (outliers defined
as data points that are more than 1.5-D away from the 25th or 75th percentile value,
with D being the distance between the 25th and 75th percentiles).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Ground truth data, including extracted spike times and calcium traces, are
deposited in the GitHub repository together with demo scripts (https://github.
com/HelmchenLabSoftware/Cascade). We provide a cloud-based Colaboratory
Notebook that allows for interactive browsing through all datasets (https://colab.
research.google.com/github/HelmchenLabSoftware/Cascade/blob/master/
Demo%20scripts/Explore_ground_truth_datasets.ipynb). Raw data were recorded
in different formats, and all newly recorded raw datasets are also available upon
reasonable request in their original formats. Publicly available datasets are
described in detail in the Methods (‘Extraction of ground truth from publicly
available datasets’).
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Additional information on experimental design and reagents is available in the
Research Life Sciences Reporting Summary linked to this paper.

Code availability

A cloud-based version of CASCADE is available as a Colaboratory Notebook
(https://colab.research.google.com/github/HelmchenLabSoftware/Cascade/blob/
master/Demo%20scripts/Calibrated_spike_inference_with_Cascade.ipynb).

The code is also available as a GitHub repository together with demo scripts,
installation instructions and FAQs (https://github.com/HelmchenLabSoftware/
Cascade). Pre-trained models for CASCADE are archived in an online server
(https://www.switch.ch/drive/) and retrieved automatically by the CASCADE code.

References

58. Frank, T., Monig, N. R., Satou, C., Higashijima, S. & Friedrich, R. W.
Associative conditioning remaps odor representations and modifies inhibition
in a higher olfactory brain area. Nat. Neurosci. 22, 1844-1856 (2019).

59. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Héusser, M. Targeted
patch-clamp recordings and single-cell electroporation of unlabeled neurons
in vivo. Nat. Methods 5, 61-67 (2008).

60. Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and

stimulation techniques in brain slices. J. Neurosci. Methods 154, 1-18 (2006).

. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software
for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

62. Suter, B. A. et al. Ephus: multipurpose data acquisition software for
neuroscience experiments. Front. Neural Circuits 4, 100 (2010).

63. Huang, K.-H. et al. A virtual reality system to analyze neural activity and
behavior in adult zebrafish. Nat. Methods 17, 343-351 (2020).

64. Langer, D. et al. HelioScan: a software framework for controlling in vivo
microscopy setups with high hardware flexibility, functional diversity and
extendibility. . Neurosci. Methods 215, 38-52 (2013).

65. Pecka, M., Han, Y., Sader, E. & Mrsic-Flogel, T. D. Experience-dependent
specialization of receptive field surround for selective coding of natural
scenes. Neuron 84, 457-469 (2014).

66. Pernfa-Andrade, A. J. et al. A deconvolution-based method with high
sensitivity and temporal resolution for detection of spontaneous synaptic
currents in vitro and in vivo. Biophys. J. 103, 1429-1439 (2012).

67. Guzman, S. J., Schlogl, A. & Schmidt-Hieber, C. Stimfit: quantifying
electrophysiological data with Python. Front. Neuroinformatics 8, 16 (2014).

68. GENIE project, Janelia Farm Campus, HHMI & Svoboda, K. Simultaneous
imaging and loose-seal cell-attached electrical recordings from neurons
expressing a variety of genetically encoded calcium indicators. https://crcns.
org/data-sets/methods/cai-1/about-cai-1 (2015).

69. Boaz, M., Dana, H., Kim, D. S., Svoboda, K. & GENIE project, Janelia Farm
Campus, HHMI. jJRGECO1a and jRCaMP1a characterization in the intact
mouse visual cortex, using AAV-based gene transfer, 2-photon imaging and
loose-seal cell attached recordings. https://crcns.org/data-sets/methods/cai-2/
about-cai-2 (2016).

70. Reynolds, S., Abrahamsson, T., Sjostrém, P. J., Schultz, S. R. & Dragotti, P. L.
CosMIC: a consistent metric for spike inference from calcium imaging.
Neural Comput. 30, 2726-2756 (2018).

. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In International conference on
machine learning. 448-456 (PMLR, 2015).

6

—

7

—

72. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput.
9, 1735-1780 (1997).

73. Gers, E. A., Schmidhuber, J. & Cummins, F. Learning to forget: continual
prediction with LSTM. Neural Comput. 12, 2451-2471 (1999).

74. Schuster, M. & Paliwal, K. Bidirectional recurrent neural networks. Signal
Process. IEEE Trans. 45, 2673-2681 (1997).

75. Graves A., Fernandez S., Schmidhuber J. Bidirectional LSTM Networks for
Improved Phoneme Classification and Recognition. Duch W., Kacprzyk J.,
Oja E., Zadrozny S. (eds) Artificial Neural Networks: Formal Models and
Their Applications - ICANN 2005. Lecture Notes in Computer Science,
vol 3697. (Springer, Berlin, Heidelberg, 2005).

76. Eden, U. T. & Kramer, M. A. Drawing inferences from Fano factor
calculations. J. Neurosci. Methods 190, 149-152 (2010).

Acknowledgements

We thank the members of the GENIE project, the Allen Institute and the Spikefinder
project for publicly providing existing ground truth datasets together with excellent
documentation. We thank P. Berens and E. Froudarakis for providing additional
information on the Spikefinder datasets. We thank G. Schoenfeld for helpful discussions
on DS #18 and H. Heiser, N. Temiz, C. Satou, G. Schoenfeld and H. Luetcke for testing
earlier versions of the toolbox. This work was supported by grants to EH. from the
Swiss National Science Foundation (project grant no. 310030-127091 and Sinergia
grant no. CRSII5-180316) and the European Research Council (ERC Advanced Grant
BRAINCOMPATH, grant agreement no. 670757); by grants to K.K. from MEXT, Japan
(Scientific Research for Innovative Areas, no. 17H06313); by grants to R.W.E. from

the Swiss National Science Foundation (project grant no. 310030B-152833/1) and the
European Research Council (ERC Advanced Grant MCircuits, grant agreement no.
742576); by the Novartis Research Foundation; by a UZH Forschungskredit and a
fellowship from the Boehringer Ingelheim Fonds to PR.

Author contributions

PR. conceived the project, developed the algorithm, performed ground truth recordings
(DSs #4-8), performed all analyses, developed the toolbox and wrote the paper. S.C.
performed ground truth recordings (DS #18 and DS #19). A.H. developed the toolbox.
M.E. and KK. (DS #3), A.K. and Y.D. (DS #2, DS #22 and DS #23) and A.B. and S.H.
(DSs #24-27) performed and pre-processed ground truth recordings. EH. supervised
ground truth recordings (DS #18 and DS #19) and the development of the toolbox

and wrote the paper. R W.E. supervised ground truth recordings (DSs #4-8) and the
development of the algorithm and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41593-021-00895-5.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41593-021-00895-5.

Correspondence and requests for materials should be addressed to PR., EH. or RW.E

Peer review information Nature Neuroscience thanks the anonymous reviewers for their
contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


https://colab.research.google.com/github/HelmchenLabSoftware/Cascade/blob/master/Demo%20scripts/Calibrated_spike_inference_with_Cascade.ipynb
https://colab.research.google.com/github/HelmchenLabSoftware/Cascade/blob/master/Demo%20scripts/Calibrated_spike_inference_with_Cascade.ipynb
https://github.com/HelmchenLabSoftware/Cascade
https://github.com/HelmchenLabSoftware/Cascade
https://www.switch.ch/drive/
https://crcns.org/data-sets/methods/cai-1/about-cai-1
https://crcns.org/data-sets/methods/cai-1/about-cai-1
https://crcns.org/data-sets/methods/cai-2/about-cai-2
https://crcns.org/data-sets/methods/cai-2/about-cai-2
https://doi.org/10.1038/s41593-021-00895-5
https://doi.org/10.1038/s41593-021-00895-5
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience

NATURE NEUROSCIENCE

DS #01 (OGB-1, m)

AF/F amplitude (%)
o o = = N
o o o (4,1 o
Area (%'s)
o N E [}

b ps#o2 (0GB-1,m)

6

5 6 .

4 I. ¢ .
3 o
2 .

1 2

0

. 0

2 0 2 4 2 4 2 0 2 4 2 6
Time (s) Neuron #
f
DS #06 (GCaMP6f, zf) 9 DS #07 (GCaMPéf, zf)
120 20
20 100 15 80
° .
15 80 L o sol* ",
10 60 40 .
5 40{ -, 5 ° .
20{ *
o 20 0
| 0 0
2 0 2 4 246 2 0 2 4 2610
|
DS #11 (GCaMP6f, m) DS #12 (GCaMP6s, m)
20 15 50 %
15 40 401 =
.
30
10 e, 30 .
¢ 20
5 50 o s 10
0 . 0 101°
0 -10 0
2 0 2 4 261014 2 0 2 4 2 4
p
DS #16 (GCaMP6s, m) DS #17 (GCaMP5k, m)
30
8 251, 20 25
6 20 15 204,,.
4 15 . 10 15 °
2 10 . 5 10 .
0 5 ° 0 5
2 0 0
2 0 2 4 246 2 0 2 4 135
u
DS #21 (jRGECO1a, m) DS #22 (OGB-1, m, SST)
15 25
204 1.0 3
10 15 0.5 2 *
5 10 00
1
5
0 * 0.5
! 0 0
2 0 2 4 135 2 0 2 4 1
z aa

DS #27 (GCaMP6f, m, PV)

TpoE oy,
4 . 2 )
2 6 ! .
4 * 0 1
0 2 -1
} 0 0
2 0 2 4 12 2 0 2 4 1

DS #03 (Cal-520, m)

15
15
10 1.
5 51
0
I 0
2 0 2 4 2 4
h  Dbs#o8 (GcamPer, zf)
8 15
6 .
10
4
2 5{e @
0
0
2 0 2 4 2 4
DS #13 (GCaMP6s, m)
40 150
30 .
20 100
10 50 .
e® o o
0 s
0
2 0 2 4 2 610

DS #18 (R-CaMP1.07, m)

12
10 40
8 30
6 N,
4 20
2 104
o .
I 0
2 0 2 4 2 4
DS #23 (OGB-1, m, PV)
2.0
1.0 *
1.54
0.5 10l e
e
0.0 05
0
2 0 2 4 2 4

RESOURCE

d
DS #04 (OGB-1, zf) DS #05 (Cal-520, zf)
10 25 80
i “or 20 60
6 30 15
4 20 10 0 .
2 . 5 °
w0l 20
0 0
0 ! 0
2 0 2 4 2 4 2 0 2 4 135
DS #09 (GCaMP6f, m) DS #10 (GCaMP6f, m)
15 %0 . 30
254, 21,
10 20 20 20 .
1541 154 o
5 0] o 10 0l .
0 5 . 0 5 .
0 0
2 0 2 4 246 2 0 2 4 2468

DS #14 (GCaMP6s, m)

ot 250
50 .
40 200
30 150 .
20 100 .
10 50
0 .
0

DS #15 (GCaMP6s, m)

2 0 2 4 135

DS #19 (R-CaMP1.07, m)

10 12
8 01,
.
6 81 %,
4 51,
4
2 , ..
0
. 0

40 .
10 o e
30
* o
5 20 ..‘
104 °®
0
! 0
2 0 2 4

DS #20 (jRCaMP1a, m)

N

o N A O © O

DS #24 (GCaMP6f, m, PV)

N oW A

25
20
.
.
15
10
.
5
b 0
2 0 2 4

DS #25 (GCaMP6f, m, SST)

Now N

15 .
.
.
1.0 .
05 .
° .
0 1
| 0
2 0 2 4

.
10
1 51 .
0
. 0
2 0 2 4 123

Extended Data Fig. 1| Linear kernels extracted from all ground truth datasets. The kernels are optimized such that when the ground truth spike times
are linearly convolved with the kernel, the experimentally recorded AF/F trace is ideally approximated. In practice, this is achieved using regularized linear
deconvolution of calcium traces based on spike times (Methods). Kernels vary both in amplitude and shape across datasets and within datasets. For
single neurons, the kernel area (right panels) is only shown if the kernel could be reliably determined, as tested with the variability of the kernel across the
recording (Methods). The red arrow in panel (r) indicates an outlier case that is discussed in Extended Data Fig. 4a. m: Mouse, zf: Zebrafish.
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Extended Data Fig. 2 | lllustration of different baseline noise levels. AF/F ground truth traces were resampled with added noise to reach the target noise
level v. a-d, Noise level illustration from v=15 (very high noise level) to v=1 (very low noise level). Standardized noise v is given in units of %-Hz"2.
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Extended Data Fig. 3 | Matching standardized noise level v of training and test data. Same as Fig. 2e-g, but with each column (testing level) normalized
in order to highlight that the optimal training level for each testing noise level lies close to the diagonal. The correlation (a) was normalized by the
maximum of each column, while error and bias metrics have been normalized by the minimum of each column. v in units of standardized noise, %-Hz""2.
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Extended Data Fig. 4 | Generalization across neurons within a dataset. The deep network was trained on all neurons of a specific dataset except one, and
then tested with the remaining neuron. This analysis shows how the network is able to generalize to new neurons recorded under the same conditions,

as a function of the standardized noise level vin %-Hz""2. a-d, Performance of the predictions for 4 selected ground truth datasets in terms of correlation,
error and bias as a function of the standardized noise level. Error values were cropped at a value of 5 for display purposes. Single neurons in grey, median
across neurons in blue. Grey lines highlighted by arrows indicate outlier neurons with particularly low spike rates (black and green arrows) and particularly
distinct calcium response kernel (red arrow, see main text for discussion). e, Correlation, error and biases as a distribution across neurons within each
dataset (number of neurons for each dataset as indicated in Table 1). For box plots, the median is indicated by the central line, 25th and 75th percentiles by
the box, and maximum/minimum values excluding outliers (points) by the whiskers. All datasets were re-sampled at a frame rate of 7.5Hz.
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Extended Data Fig. 5 | Typical artifacts in ground truth recordings. Calcium trace (AF/F), true action potentials (APs), inferred spiking activity (SR) and
true ground truth spiking activity (GT). a, The baseline of this recording is unstable, exhibiting irregular bumps (arrowheads). The supervised deep network
can learn to ignore these movement artifacts if their dynamics is dissimilar from the sharp onset of calcium transients. Predictions of the deep network are
shown in black, ground truth in grey. Green arrowheads indicate movement artifacts that are not associated with high spiking acitivity (correct rejections
of artifacts), while black arrowheads indicate movement artifacts that are not recognized as artifacts by the network (false positives). The zoom-in on

the right shows an example where a movement artifact is associated with a negligeable spike rate (correct rejection). b, Fluorescence transients without
corresponding action potentials are clearly visible (red arrowheads). These are induced by contamination through bright neuropil. The deep network is
unable to distinguish this artifact from true calcium transients. ¢, Negative transients (arrowheads) are generated by standard neuropil decontamination
(subtraction of the neuropil surround). The deep network can learn to partially ignore these events (correct rejections). d, Trace showing periodic
movement artifacts that do not correspond to action potentials. e, A power spectral density of the recording in (d) exhibits a peak at ca. 1.5 Hz, suggesting

breathing of the anaesthetized animal underlying the movement artifact.
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Extended Data Fig. 6 | Improvement of performance with ground truth dataset size. The global EXC model (see Fig. 3) was trained as before, but using
only a subset of the ground truth data points (x-axis). The performance (correlation) across each dataset was normalized to the performance with 5
million data points (horizontal dashed line). The performance approaches an asymptote at approximately 100,000 data points. A typical single ground
truth dataset contains ca. 400,000 data points (median across all datasets; vertical dashed line). This result also indicates that a diverse but smaller
training dataset sampled from all ground truth datasets results in better generalization than a larger training dataset from a single ground truth dataset.
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Extended Data Fig. 7 | Comparison with model-based algorithms, extension of Fig. 4a. Example predictions from the deep-learning based method
(CASCADE) and five model-based algorithms (MLSpike, CalmAn, Peeling, Suite2p, Jewell&Witten) of a AF/F recording. Inferred spike rates are in black,
ground truth spike rates in orange. r indicates correlation of predictions with ground truth. Events that are not detected across all algorithms (false
negatives) are labeled with red arrowheads. Compared to the example in Fig. 4a, the calcium recording here is rather noisy due to the insensitivity of
GCaMP to single action potentials in this neuron.
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Extended Data Fig. 8 | Comparison of CASCADE with model-based algorithms, extension of Fig. 4b. Comparison of the six algorithms when optimized
for a single dataset, showing relative error and relative bias for all neurons, grouped by ground truth dataset.
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Extended Data Fig. 9 | Performance dependence on temporal precision of predictions. All algorithms were optimized via the mean squared error to infer
spike rates at a specific temporal precision defined by the smoothing of the ground truth (default: Gaussian smoothing with kernel of 6 =200 ms). For

all model-based algorithms, the inferred spike traces were shifted in time to optimize the mean squared error. a, Predictions from an example AF/F trace
(top; dataset #09). Ground truth spike rates are shown in orange, inferred spike rates as black overlay. Correlation values are indicated at the right. The
scale bars for AF/F and time are the same as in Fig. 4a. b, Highlighted excerpt from (a). Due to the high temporal precisions of the inferred spike rates,
small time shifts lead to low performance (clearly visible for the Peeling algorithm in this example). The CalmAn and Suite2p algorithms deconvolve

less aggressively, therefore making less dramatic errors. CASCADE and MLSpike perform best for this example neuron, with CASCADE detecting more
events than MLSpike. ¢, Overall performance (correlation) change with temporal precision of predictions (smoothing kernels shown below) on a subset
of datasets (datasets #4, #6, #9, #11-14 and #18). As expected, correlation with ground truth decreased with higher temporal resolution of the desired
temporal resolution. This decrease was especially prominent for algorithms that, by design, aim at the inference of precise (discrete) spike rates (Peeling,
Jewell&Witten). The decrease was less pronounced for CASCADE compared to for example MLSpike. Shaded corridors indicate SEM across n=8
datasets. All recordings resampled at a noise level of 2 with a frame rate of 7.5 Hz.
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Extended Data Fig. 10 | Predictions of spiking probabilities and discrete spikes from the Allen Brain Institute Visual Coding dataset. Predictions were
produced with the global EXC model trained at 30 Hz. From dataset ID '552195520', plotting a total of 40 neurons out of 74, approximately Tminute out of
63.2minutes of recording for this dataset. Discrete spikes are the most likely fit, generated with an algorithm using Metropolis-Monte Carlo sampling as
starting point (see Methods).
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Data collection For the collection of datasets 4-8, the Matlab-based open software Ephus (version described in Suter et al., 2010) was used for
electrophysiology and Scanimage 3.8 (Pologruto et al., 2003) for calcium imaging. For collection of datasets 18-19, Clampex 10.2 software was
used for electrophysiology and Helioscan (Langer et al., 2013) for calcium imaging. For dataset 1, AxoGraph software (version X) was used for
electrophysiology and Scanimage (Pologruto et al., 2003) for calcium imaging. For the multiplane population imaging dataset in adult
zebrafish (Figure 5), a customized version of Scanimage (Pologruto et al., 2003; Rupprecht et al., 2016; https://github.com/PTRRupprecht/
Instrument-Control/tree/master/Scanimage%20B) was used. For dataset 24-27, WinWCP (John Dempster, University of Strathclyde) was used
for electrophysiology and a custom software written in Labview for calcium imaging (Khan et al., 2018). For datasets 2, 22 and 23, Clampex
(Molecular Devices) was used for electrophysiology and Scanimage (Pologruto et al., 2003) for calcium imaging.

Data analysis The main data analyses including the implementation of the spike inference algorithm were performed in Python 3. The code for the spike
inference algorithm together with extensive documentation is deposited on a Github repository (https://github.com/HelmchenlLabSoftware/
Cascade). Additional analyses and visualizations were performed in Matlab. Statistical tests were performed either in Matlab or in R.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The processed raw data of the ground truth datasets described in this study are available from Github (https://github.com/HelmchenLabSoftware/Cascade).
Pretrained models of CASCADE are automatically retrieved by the code provided in the Github repository and are stored in the cloud (www.switch.ch/drive, via
University of Zurich). The raw unprocessed data that support the findings of this study are available from the corresponding author upon request.
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Sample size Sample sizes were not predetermined for this study. For each dataset, ground truth recordings from 10-20 neurons of a minimum duration
would be desirable to provide a clear measurement of variability across a dataset. However, fewer neurons were recorded from some
datasets due to technical difficulties, and the resulting datasets were also useful for our analyses. In addition, this study explicitly analyzed the
effect of limited sample sizes for each of the analyzed datasets (see Extended Data Figure 6).

Data exclusions  Exclusion of low-quality experimental ground truth data was an essential part of this study and is described in detail in the Methods section
"Quality control". Simultaneous calcium imaging and juxtacellular recordings are technically challenging experiments that can often result in
suboptimal recordings. Suboptimal recordings with, e.g., strong movement artifacts during imaging or contamination of the juxtacellular
recordings by spikes from adjacent neurons would result in erroneous ground truth and therefore requires quality control including the
exclusion of such low-quality recordings.

Replication All results and analyses based on the spike inference algorithm (CASCADE) were replicated on the same computer and on other computers on
various operations systems (Linux, Windows, Mac).
Ground truth experiments were not replicated beyond the recordings shown in Table 1. Multiplane population imaging experiments in adult
zebrafish (Fig. 5) were replicated with similar results in >20 fish.

Randomization  Animals were not allocated into different groups in this study.

Blinding Animals were not allocated into different groups in this study.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

For experiments with zebrafish, wildtype or genetically modified (neuroD:GCaMP6f, Rupprecht et al., 2016) adult zebrafish (5-10
months old) of both sexes were used. For experiments for dataset 1, C57BL6/J male mice (postnatal days 28-61) were used. For
experiments for datasets 17 and 18, 8-12 week-old C57BL/6) male mice and genetically modified (Grik4-cre-G32-4Stl) male mice
were used. Male crosses between PV-Cre and Rosa-CAG-LSL-tdTomato were used for dataset 24 and 27, VIP-Cre male mice for
dataset 25 and SOM-Cre female mice for dataset 26 (all mice postnatal days 36-56, except for dataset 27, where mice were >8 weeks
old). Male GIN mice (FVBTg(GadGFP)45704Swn/J) were used for dataset 22, male crosses between a PV-Cre mouse [(B6;129P2-
Pvalbtm1(cre)Arbr/J) and a loxP-flanked tdTomato reporter mouse (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) were used for
dataset 23, and male crosses between a a CaMKlla-Cre mouse (B6.Cg-Tg(Camk2a-cre)T29-15tl/J) and a loxP-flanked tdTomato
reporter mouse were used for dataset 2.

No wild animals were used in this study.
No samples were collected from the field for this study.

All experimental procedures for experiments with mice (datasets 18, 19) were conducted in accordance with the ethical principles
and guidelines for animal experiments of the Veterinary Office of Switzerland and were approved by the Cantonal Veterinary Office in
Zurich. The care of animals and experimental procedures for dataset 1 were carried out in accordance with national and institutional
guidelines, and all experimental protocols were approved by the Animal Experimental Committee of the University of Tokyo. All
zebrafish experiments (datasets 4-8) and the experiments for datasets 24-27 were approved by the Veterinary Department of the
Canton Basel-Stadt (Switzerland). All experimental procedures for datasets 2, 22 and 23 were performed in accordance with NIH
guidelines and approved by the Animal Care and Use Committee at University of California, Berkeley.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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