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Imaging of somatic calcium signals using organic or genetically 
encoded fluorescent indicators has emerged as a key method to 
measure the activity of many identified neurons simultaneously 

in the living brain1,2. However, calcium signals are only an indirect, 
often non-linear and low-pass filtered, proxy of the more funda-
mental variable of interest—that is, the train of somatic action 
potentials (spikes)3–6. The relationship between calcium signals 
and spike trains is ideally assessed directly by simultaneous elec-
trophysiological recordings—preferably in the minimally disruptive 
juxtacellular configuration—and optical imaging of a calcium indi-
cator signal in the same neuron. These dual recordings can serve 
as ground truth to calibrate and optimize algorithms for inferring 
spike times or spike rates from other calcium imaging data (Fig. 1a). 
Based on such ground truth datasets, various model-based meth-
ods7–17 as well as supervised machine learning algorithms16,18–21 for 
spike inference have been developed.

Ideally, an algorithm should be applicable to infer spike rates 
in unseen calcium imaging datasets for which no ground truth is 
available. The relationship between spikes and the evoked calcium 
signals depends on multiple factors, including neuron type, calcium 
indicator type and concentration, optical resolution, sampling rate 
and noise level. Many of these parameters can vary substantially 
between experiments and even among neurons within the same 
experiment. As a consequence, experimental conditions of novel 
datasets are often not well matched to those of available ground 
truth data. It is, therefore, not clear how an algorithm based on a 
specific ground truth dataset generalizes to other datasets, which 

complicates the inference of spike rates from calcium imaging data 
under most experimental conditions13,14,22,23.

Here we address the issue of generalization systematically. To 
assemble a large ground truth database, we performed juxtacel-
lular recordings and two-photon calcium imaging using different 
calcium indicators and in different brain regions of zebrafish and 
mice. This database was then augmented with a carefully curated 
selection of publicly available ground truth datasets. Using this 
large database, we developed a supervised method for calibrated 
spike inference of calcium data using deep networks (termed 
CASCADE). CASCADE includes methods to resample the original 
ground truth datasets to match their sampling rate and noise level 
to a specific calcium imaging dataset of interest. This procedure 
allowed us to train machine learning algorithms upon demand on 
a broad spectrum of resampled ground truth datasets, matching a 
wide range of experimental conditions. Finally, we tested the perfor-
mance of CASCADE systematically when applied to unseen data. 
CASCADE was robust with respect to any hyper-parameter choices 
and outperformed existing algorithms in benchmark tests across all 
ground truth datasets and noise levels. The CASCADE algorithm 
can be used directly via a cloud-based web application and is also 
available, together with the ground truth datasets, as a simple and 
user-friendly Python-based toolbox.

Results
A large dataset of curated ground truth recordings. To extend  
the spectrum of existing ground truth datasets, we performed  
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simultaneous electrophysiological recordings and calcium imaging 
in adult zebrafish and mice (Fig. 1b–h and Table 1). In zebrafish, a 
total of 47 neurons in different telencephalic regions were recorded in 

the juxtacellular configuration in an explant preparation of the whole 
adult brain24 using the synthetic calcium indicators Oregon Green 
BAPTA-1 (OGB-1) and Cal-520 as well as the genetically encoded 
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Fig. 1 | Ground truth datasets. a, A large and diverse ground truth database obtained by simultaneous calcium imaging and juxtacellular recording (left) 
can be used (1) for the exploration of the ground truth by a user, (2) for the analysis of the out-of-dataset generalization of spike inference and (3) for the 
training of a supervised algorithm for spike inference. The right column refers to relevant figures. Colaboratory Notebook refers to relevant cloud-based 
tools accompanying this paper. b–f, examples of ground truth recordings with different indicators, different brain regions and species. Left, calcium signal 
traces (ΔF/F) are shown together with the detected action potentials. Dashed lines indicate breaks during recordings. Traces are representative for 
recordings from different datasets (see Table 1 for detailed information). Middle, linear kernels of ΔF/F (time scale in seconds) and electrophysiological 
data (time scale in milliseconds) triggered by single spikes. Right, fluorescence image of the respective neuron, together with the ROI for fluorescence 
extraction. g, Average spike rate for each neuron of the ground truth database (log scale). Twenty-seven datasets were included in total. Datasets from 
inhibitory neurons comprise DSs #22–27. h, Integral ΔF/F of the spike kernel (first 2 s) for each neuron. Lowest values are observed in PV-positive 
interneurons (DS #23 and DS #24). See extended Data Fig. 1 for the underlying kernels. AP, action potential.
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calcium indicator GCaMP6f. In head-fixed mice, ground truth 
recordings were performed under anaesthesia in hippocampal area 
CA3 using the genetically encoded indicator R-CaMP1.07 (ref. 25).  

Furthermore, we extracted ground truth from published studies  
of neurons in mouse primary somatosensory cortex (S1), using  
Cal-520 and R-CaMP1.07, respectively (total of 21 neurons)26,27, and 

Table 1 | overview of all ground truth datasets

Dataset 
identifier

Calcium 
indicator

Induction method Animal 
model

Brain 
region

Frame 
rate 
(Hz)

Standardized 
noise 
(%·Hz−1/2)

Spike rate 
(Hz)

# of 
neurons

Recording 
duration 
(min)

Source 
paper

#1 OGB-1 Acute injection Mouse V1 11.3 0.7 ± 0.2 5.5 ± 1.5 11 83 Theis et al., 
2016

#2 OGB-1 Injection + 
tg(tdTomato-CaMKIIα)

Mouse V1 15.6 0.5 ± 0.1 0.2 ± 0.2 16 116 Kwan and 
Dan, 2012

#3 Cal-520 Acute injection Mouse S1 500.0 0.3 ± 0.1 1.2 ± 0.8 8 23 Tada et al., 
2014

#4 OGB-1 Acute injection Zebrafish pDp 7.7 1.0 ± 0.2 0.4 ± 0.5 15 81 This paper

#5 Cal-520 Acute injection Zebrafish pDp 7.8 2.0 ± 1.3 1.3 ± 2.1 5 31 This paper

#6 GCaMP6f tg(NeuroD) Zebrafish aDp 30.0 1.3 ± 0.8 1.9 ± 0.7 8 46 This paper

#7 GCaMP6f tg(NeuroD) Zebrafish dD 30.0 0.6 ± 0.1 1.5 ± 0.6 10 69 This paper

#8 GCaMP6f tg(NeuroD) Zebrafish OB 30.0 0.8 ± 0.2 5.3 ± 3.3 9 45 This paper

#9 GCaMP6f AAV Mouse V1 60.1 0.4 ± 0.1 0.6 ± 0.2 11 129 Chen et al., 
2013

#10 GCaMP6f tg(emx1) Mouse V1 160.1 0.5 ± 0.2 1.6 ± 1.4 23 72 Huang 
et al., 2019

#11 GCaMP6f tg(Cux2) Mouse V1 158.3 0.5 ± 0.2 1.5 ± 1.5 25 78 Huang 
et al., 2019

#12 GCaMP6s tg(tetOs) Mouse V1 151.6 0.8 ± 0.1 1.0 ± 0.4 6 13 Huang 
et al., 2019

#13 GCaMP6s tg(emx1) Mouse V1 157.5 0.5 ± 0.2 1.3 ± 0.7 26 62 Huang 
et al., 2019

#14 GCaMP6s AAV Mouse V1 60.1 0.5 ± 0.2 0.4 ± 0.4 7 70 Chen et al., 
2013

#15 GCaMP6s AAV Mouse V1 59.1 0.7 ± 0.2 6.2 ± 3.5 9 77 Theis et al., 
2016

#16 GCaMP6s AAV Mouse V1 59.1 0.9 ± 0.2 5.8 ± 3.3 9 25 Theis et al., 
2016

#17 GCaMP5k AAV Mouse V1 50.0 0.5 ± 0.2 1.6 ± 0.9 9 29 Akerboom 
et al., 2012

#18 R-CaMP1.07 tg(Grik4-cre) + AAV Mouse CA3 20.0 1.6 ± 0.3 2.2 ± 0.8 4 33 Schoenfeld 
et al., 2021

#19 R-CaMP1.07 AAV Mouse S1 15.0 0.6 ± 0.2 0.9 ± 1.0 9 50 Bethge 
et al., 2017

#20 jRCaMP1a AAV Mouse V1 15.0 1.3 ± 0.5 0.6 ± 0.6 10 88 Dana et al., 
2016

#21 jRGeCO1a AAV Mouse V1 29.8 1.0 ± 0.3 1.6 ± 2.0 11 118 Dana et al., 
2016

#22 OGB-1 Injection + tg(GFP-GIN) Mouse V1 (SST) 15.6 0.6 ± 0.1 1.1 ± 1.6 5 49 Kwan and 
Dan, 2012

#23 OGB-1 Injection + 
tg(tdTomato-PV)

Mouse V1 (PV) 15.6 0.6 ± 0.1 6.9 ± 5.4 7 17 Kwan and 
Dan, 2012

#24 GCaMP6f tg(PV-cre) + AAV Mouse 
(in vitro)

V1 (PV) 26.6 0.5 ± 0.2 11.6 ± 5.4 13 215 Khan et al., 
2018

#25 GCaMP6f tg(SOM-cre) + AAV Mouse 
(in vitro)

V1 (SST) 26.6 0.6 ± 0.2 5.9 ± 3.5 17 375 Khan et al., 
2018

#26 GCaMP6f tg(VIP-cre) + AAV Mouse 
(in vitro)

V1 (VIP) 26.6 2.1 ± 1.3 5.5 ± 2.5 11 252 Khan et al., 
2018

#27 GCaMP6f tg(tdTomato-PV) + AAV Mouse V1 (PV) 30.0 2.8 ± 1.1 7.0 ± 4.1 4 30 This paper

Standardized noise of calcium signals (ΔF/F) was determined as described in the Methods. Frame rate is given as the mean across experiments if the frame rates varied (typically only slightly) across 
experiments within a single dataset. Noise levels and spike rates are given as mean ± s.d. across neurons.
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of inhibitory neurons in mouse primary visual cortex (V1), using 
OGB-1 in vivo and GCaMP6f in slices, respectively (total of 69 neu-
rons)28,29. A small new in vivo dataset for parvalbumin (PV)-positive 
neurons using GCaMP6f (four neurons) complemented this dataset. 
In addition, we surveyed openly accessible datasets and extracted 
ground truth from raw movies (when available) or pre-processed 
calcium imaging data16,19,30–34. Rigorous quality control (Methods) 
reduced the original number from a total of 193 available neurons 
to 157 neurons. Together with our own recordings, we assembled 27 
datasets comprising a total of 298 neurons, eight calcium indicators 
and nine brain regions in two species, totaling ~38 h of recording and 
495,077 spikes.

Recording durations, imaging frame rates and spike rates varied 
greatly across ground truth datasets (Table 1). Typical spike rates 
spanned more than an order of magnitude, ranging from 0.4 Hz to 
11.6 Hz, and frame rates varied between 7.7 Hz and >160 Hz (Table 1  
and Fig. 1g). Using regularized deconvolution, we computed the 
linear ΔF/F kernel evoked by the average spike and found that the 
area under the kernel curve varied substantially across datasets, 
even for data from the same indicator, and was substantially smaller 
for datasets with inhibitory neurons, especially for PV interneurons 
(Fig. 1h). Interestingly, kernels showed large diversity even across 
neurons within the same dataset (Fig. 1h and Extended Data Fig. 1), 
which highlights the challenge faced by any algorithm that is sup-
posed to generalize to unseen data.

Inference of spike rates with a deep convolutional network. 
Several favorable properties make supervised deep learning 
approaches well suited for spike inference from calcium imaging 
data. First, deep learning generally tends to outperform other clas-
sification or regression methods if the amount of training data is 
sufficiently high (typically >1,000 data points for each category 
in classification tasks)35. Second, the cost function can easily be 
modified to optimize the metric of interest—for example, correla-
tion with ground truth or mean squared error—without changing 
network architecture. Third, the temporal extent of receptive fields 
of deep networks can be adapted to account for history-dependent 
effects, such as the dependence of action potential-evoked calcium 
transients on previous activity (see Supplementary Fig. 1 for an 
example). Finally, deep networks are intrinsically non-linear, allow-
ing to fit non-linear behaviors of calcium indicators.

We designed a simple convolutional network that uses a seg-
ment of the calcium signal trace (expressed as percentage fluores-
cence change ΔF/F) around a time point t to infer the spike rate at t. 
Compared to two-dimensional image classification and object label-
ling35,36, requirements on computational hardware are low because 
datasets are small and the inference task is only one-dimensional 
(time). For example, ImageNet37, a dataset used for visual object 
identification and detection in the deep learning field, is typically 
used at a resolution of 256 × 256 = 65,536 data points per sample, 
whereas the input used for spike inference in this study was smaller 
by approximately three orders of magnitude, typically consisting of 
a segment of the ΔF/F trace with 64 data points.

We used a network architecture with a standard convolutional 
design, consisting of rectifying linear units (ReLUs) that were dis-
tributed across three convolutional layers, two pooling layers and a 
single dense layer. The final dense layer projected to a single output 
unit that reported the estimated spike rate for the current time t 
(Fig. 2a; see Methods for more details).

Resampling of ground truth data for noise matching. The key idea 
underlying our approach is that the ground truth (training data) is 
as important as the algorithm itself and should match as well as pos-
sible the noise level and sampling rate of the unseen population cal-
cium data of interest (test data). We, therefore, devised a workflow 
where noise level and sampling rate are extracted from the test data 

and then used to generate noise- and rate-matched training data 
from the ground truth database (Fig. 2b) by temporal resampling 
and addition of noise. To facilitate gradient descent, the ground 
truth spike rate is smoothed with a Gaussian kernel (σ = 0.2 s unless 
otherwise indicated; Methods).

To extract ΔF/F noise levels, we computed a standardized noise 
metric ν that is robust against outliers and approximates the stan-
dard deviation of ΔF/F baseline fluctuations. This metric was nor-
malized by the square root of the frame rate to allow for comparison 
of noise measurements across datasets. Consequently, ν has units 
of %·Hz−1/2, which, for simplicity, we usually omit (Methods and 
Extended Data Fig. 2). To generate training data with pre-defined 
ΔF/F noise levels, we explored several approaches based on 
sub-sampling of regions of interest (ROIs) or additive artificial noise 
(Supplementary Note 1 and Supplementary Fig. 2). We identified 
the addition of artificial Poisson-distributed noise as the most suit-
able approach to transform the ground truth data into appropriate 
training data for the deep network.

To quantify deep network performance, we developed a set of 
complementary metrics for the accuracy of spike inference (equa-
tions and illustrations in Supplementary Fig. 3). Following previous 
studies, we calculated the Pearson correlation between ground truth 
spike rates and inferred spike rates16,19. As this correlation measure 
of performance leaves the absolute magnitude of the inferred spike 
rate unconstrained, we also determined two additional quanti-
ties: the error, which was defined as sum of the absolute deviations 
between the inferred spike rate and the ground truth, and the bias, 
which was defined as the sum of the signed deviations (Methods 
and Supplementary Fig. 3). Error and bias were both normalized by 
the number of true spikes to obtain relative metrics that can be com-
pared between datasets. Of these three metrics (correlation, error 
and bias), correlation is arguably the most important one because it 
estimates the similarity of inferred and true spike rates. Error and 
bias are relevant for the inference of absolute spike rates because 
they identify spike rate estimates that are incorrectly scaled or sys-
tematically too large or small.

The performance of the deep network degraded considerably 
when the noise level of the test dataset deviated substantially from the 
noise level of the ground truth. As expected intuitively, a network that 
had only seen almost noise-free data during training failed to sup-
press fluctuations in noisier recordings. Conversely, we observed that 
a network trained on very noisy calcium signals was unable to fully 
benefit from low-noise calcium recordings, inferring only an impre-
cise approximation of the ground truth (Fig. 2c). A systematic itera-
tion across combinations of noise levels for training and test datasets 
showed that, for each test noise level, the best model had been trained 
with a similar or slightly higher noise level (Fig. 2d–g and Extended 
Data Fig. 3). Very low noise levels (ν < 2) result in a special case  
(Fig. 2d,e): because some neurons of a given ground truth dataset do 
not reach the desired noise level even without addition of noise (com-
pare to Table 1), the effective size of the training dataset decreases, 
resulting in slightly lower performance. In general, however, it 
turned out beneficial to train with noise levels that are adapted to the  
calcium data to which the algorithm will be applied after training.

Parameter robustness of spike inference. Traditional models to 
infer spiking activity typically contain a small number of param-
eters11–13,15 that describe biophysical quantities and are adjusted by 
the user. Deep networks, in contrast, contain thousands or millions 
of parameters adjusted during training that have no obvious bio-
physical meanings14,16. The user can modify only a small number 
of hyper-parameters that define general properties of the network, 
such as the loss function, the number of features per layer or the 
receptive field size—that is, the size of the input window shown 
in Fig. 2a. We, therefore, tested how spike inference performance 
depends on these hyper-parameters.
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We found that the performance of the network was robust 
against variations of all hyper-parameters (Supplementary Note 2 
and Supplementary Fig. 4a–e), allowing us to leave all parameters 
unchanged for all conditions. Moreover, overfitting was moderate 
despite prolonged training, indicating that the abundance of noise 
and sparseness of events act as a natural regularizer (Supplementary 
Note 2 and Supplementary Fig. 4f–h). Finally, we tested different  
deep learning architectures, including non-convolutional or 
recurrent long short-term memory (LSTM) networks. Although 
very large networks tended to slightly overfit the data, most net-
works performed almost equally well (Supplementary Note 2 and 
Supplementary Fig. 5). Hence, the expressive power of moderately  

deep networks and the robustness of back-propagation with gra-
dient descent enables multiple different networks to find good 
models for spike inference irrespective of the network architecture, 
hyper-parameter settings and the chosen learning procedure. This 
high robustness of the deep learning approach practically eliminates 
the need for manual adjustments of hyper-parameters.

Generalization across neurons within the same dataset. Ideally, 
the ground truth data used to train a network should match the 
experimental conditions in the test dataset (calcium indicator type, 
labelling method, concentration levels, brain region and cell type). 
To explore spike inference under such conditions, we measured how 
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well spike rates of a given neuron within a ground truth dataset can 
be predicted by networks that were trained using the other neurons 
in the dataset. First, all ground truth ΔF/F data were resampled to 
a common sampling rate and adjusted to the same noise levels by 
adding Poisson noise. If the initial noise level of a given ground 
truth neuron was higher than the target noise level, the neuron was 
excluded from this analysis. We then evaluated the performance 
of CASCADE as a function of the noise levels of the (resampled) 
datasets. As expected, correlations increased and errors decreased 
for lower noise levels, whereas average biases were not systemati-
cally affected (Extended Data Fig. 4a–d). Performance metrics also 
varied considerably across different neurons within a single dataset 
when resampled at the same noise level ν. To better understand this 
variability, we performed additional analyses.

First, we found spike-evoked calcium transients to be variable 
across neurons from the same dataset (Fig. 1h and Extended Data 
Fig. 1). Large errors and biases, as well as low correlations, were 
observed when spike-evoked calcium transients of a neuron devi-
ated strongly from those of other neurons (red arrow in Extended 
Data Fig. 4; compare to Extended Data Fig. 1r for the respective 
linear kernels of dataset (DS) #18).

Second, spike inference might be complicated by movement 
artifacts or neuropil contamination. Movement artifacts typically 
had slow onset and slow offset kinetics (Extended Data Fig. 5a) 
or a faster, quasi-periodic temporal structure related to breathing 
(Extended Data Fig. 5d,e). Neuropil contamination is often diffi-
cult to distinguish from somatic calcium signals and particularly 
severe when neurons are tightly packed and densely labelled1,38,39 
(Extended Data Fig. 5b). For a subset of datasets, we tested the 
effect of simple center-surround subtraction of the neuropil sig-
nal30. Because subtraction is not perfect, decontaminated datasets 
still contained residual neuropil signals (Extended Data Fig. 5b)  
or negative transients (Extended Data Fig. 5c). Nonetheless, 
spike inference was significantly improved by neuropil decon-
tamination (Supplementary Fig. 6). More detailed inspection 
of the results showed that CASCADE learned to ignore nega-
tive transients and movement artifacts but only as long as they 
were distinguishable from true calcium transients (Extended  
Data Fig. 5a–c).

Third, we found that the activity of sparsely spiking neurons 
is less well predicted because the calcium signal of single action 
potentials is more likely to be overwhelmed by shot noise, particu-
larly in the high-noise regime (arrows in Extended Data Fig. 4a,c). 
We, therefore, evaluated conditions required for single-spike pre-
cision and observed that either shot noise or other noise sources 
were too prominent in all ground truth datasets to allow for reli-
able single-spike detection. The trained network, thus, system-
atically underestimated single spikes (Supplementary Fig. 7). This 
observation was made using GCaMP indicators, which show a 
strongly non-linear relationship between calcium concentration 
and fluorescence and, therefore, are less sensitive to isolated single 
spikes occurring during low baseline activity, but also using syn-
thetic dyes (Supplementary Fig. 7). These observations indicate 
that the network needs to learn a tradeoff between false-positive 
detections of noise events and false-negative detections of single 
spikes. Additional details related to single-spike precision and 
the possibility to discretize inferred spike rates are discussed in 
Supplementary Note 3.

In summary, we found that CASCADE is able to generalize to 
unseen neurons from the same ground truth training set. Not sur-
prisingly, the accuracy of generalization decreases with increasing 
noise levels, in particular when spike rates are low. Accuracy is 
fundamentally limited by the variability of calcium kernels across 
neurons and probably also by the non-linearity of GCaMP-like 
indicators, and accuracy is further reduced when additional noise 
(motion artifacts or neuropil contamination) is prominent.

Generalization across datasets. We next explored how spike infer-
ence by a network trained on one ground truth dataset general-
izes to other datasets. Using all available datasets, we quantified 
the median performance metrics across all possible combinations 
of datasets for training and testing and analyzed the performance 
of each trained model across test datasets (Fig. 3). In most train-
ing/test combinations, correlations were high, whereas errors and 
biases remained low. Exceptions were rare and occurred in data-
sets with considerable motion or neuropil contamination artifacts 
(for example, DS #01 and DS #02 and DSs #21–23). The entries of 
the matrix in Fig. 3 remained highly similar when parameters such 
as the resampling rate, temporal smoothing of the ground truth or 
the noise level were modified (Supplementary Fig. 8). Interestingly, 
models trained on datasets that were dominated by excitatory neu-
rons (DSs #01–21, hence called ‘excitatory datasets’) also produced 
high-quality predictions of spike rate variations in inhibitory neu-
rons (DSs #22–26, ‘inhibitory datasets’; Fig. 3a,b), although the 
separate analysis of error and bias revealed that absolute spike rates 
were substantially underestimated (Fig. 3c–f).

Near-maximal correlation for a given dataset was often achieved 
by multiple models (Fig. 3a). In some datasets, the highest corre-
lation was even achieved when the model was trained on ground 
truth from another dataset. Interestingly, the performance of train-
ing/testing combinations showed no obvious clustering related to 
indicator type (for example, genetically encoded versus organic 
indicators) or species (zebrafish versus mouse). An attempt to 
explain the mutual predictability of datasets by more refined statis-
tical dataset descriptors, such as the mean spike rate or decay times, 
was not very successful (Supplementary Fig. 9). It is, therefore, not 
obvious how to select an optimal training dataset to predict spike 
rates for an unseen dataset.

To optimize dataset selection and network training for practical 
applications, we tested an alternative and simpler approach by train-
ing a model on all excitatory datasets except DS #01, hence called the 
‘global EXC model’ (abbreviated as ‘EXC model’). We found that this 
global model performed better than all other models in cross-dataset 
tests (Fig. 3a–f; the test dataset was always excluded from training 
data), due not only to the size but also to the diversity of the train-
ing set (Extended Data Fig. 6). Compared to randomly selecting 
a single dataset with excitatory neurons for training, correlations 
were increased by 0.05 ± 0.05; errors were reduced by 0.05 ± 0.05; 
and absolute biases were reduced by 0.25 ± 0.90 (median ± s.d.). In 
addition, the global EXC model performed better than any of the 
21 single models in all cross-dataset tests (P < 0.001 for all com-
parisons, paired signed-rank test). Compared to predictions across 
neurons within the same dataset (Extended Data Fig. 4; diagonal 
elements in Fig. 3), the correlations resulting from the EXC model 
were decreased by 0.02 ± 0.04 (P = 0.04, Wilcoxon signed-rank test), 
and errors were increased by 0.33 ± 0.53 (P = 0.01), whereas the 
absolute bias was slightly decreased (0.40 ± 0.40, P = 0.002). Hence, 
using dataset-specific ground truth can yield performance signifi-
cantly better than the global EXC model. In the absence of such 
specific calibration data, however, training the algorithm with all 
available data is a simple and effective strategy to generate a model 
that generalizes robustly to unseen datasets.

Not surprisingly, a global ‘INH model’ trained on all inhibi-
tory datasets (DSs #22–26) generalized less well across all datasets 
than the EXC model (Fig. 3). Indeed, the INH model was not more 
successful than the EXC model in predicting activity of inhibitory 
neurons with respect to correlation or error (P = 0.84 and P = 0.68; 
Fig. 3a,c), although the bias was lower (P = 0.03; Fig. 3e). Most 
likely, generalization to unseen inhibitory neurons could be further 
improved by additional ground truth for inhibitory neurons.

We also trained a model on a large artificial dataset (250 neurons) 
that was generated using the calcium imaging simulation environ-
ment NAOMi40 (Methods). The model performed well but lower 
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than the global EXC model (correlation reduced by 0.05 ± 0.04, 
P = 0.0003; error slightly increased by 0.06 ± 0.22, P = 0.0006; 
bias not significantly changed, P = 0.67; Fig. 3). We hypothesize 
that some relevant sources of variability at the neuronal level (for 

example, variable decay times, transient shapes and non-linearities) 
are captured by experimental ground truth but not by simulated 
ground truth recordings. A future application of NAOMi could be 
the simulation of ground truth data for new calcium indicators, 
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Fig. 3 | Generalization across datasets. The network was trained on a given dataset (indicated by the row number) and tested on each other ground 
truth dataset (column). Diagonal values correspond to metrics shown in Fig. 3e. ‘NAOMi’ is a model trained on simulated GCaMP6f data based on 
Charles et al.40. Rows 21–24 are networks trained on datasets with inhibitory neurons. ‘Global eXC model’ and ‘global INH model’ are globally trained 
on all excitatory or inhibitory datasets (except DS #01 and the respective test dataset). a, Correlation of predictions with the ground truth. The size 
and color of the squares scale with correlation. b, Distribution of the performance of each trained network (row) across all other datasets (distribution 
across n = 25 datasets for each box plot). The dashed line highlights the median of the best-performing model (‘global eXC model’). c, d, Relative error of 
predictions compared to the ground truth. The dashed line in d highlights the median of the best-performing mode (‘global eXC model’). e, f, Relative bias 
of predictions compared to the ground truth (distribution across n = 25 datasets for each box plot). All datasets were resampled at a frame rate of 7.5 Hz, 
with a standardized noise level of 2. For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box; and 
maximum/minimum values excluding outliers (points) are indicated by the whiskers.
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when biophysical parameters are known but experimental ground 
truth is not available.

Comparison with existing methods. To benchmark the perfor-
mance of CASCADE, we compared it to five other model-based 
methods: the fast online deconvolution procedure OASIS with 
two distinct implementations in CaImAn and Suite2p15,38,41; the 
discrete change point detection algorithm by Jewell and Witten42 
(here referred to as Jewell&Witten); and two more complex algo-
rithms, Peeling and MLSpike. Peeling uses iterative template sub-
traction to infer discrete spikes11. MLSpike was chosen because it 
outperformed various other methods in previous applications12,16. 
Although model-based methods are, in principle, non-supervised, 
several parameters need to be tuned to achieve maximal perfor-
mance on a given dataset13. To avoid sub-optimally tuned algorithms 
and to make the comparison with CASCADE as fair as possible, we 
used extensive grid searches to optimize parameter tuning of each  
algorithm/dataset combination (Methods; see Supplementary Table 1  
for the best model parameters for each dataset as a function of 
noise). This procedure allowed us to minimize the same loss func-
tion for all algorithms (mean squared error between ground truth 
and the inferred spike rate), using grid search for model-based 
approaches and back-propagation for CASCADE. Notably, the 
neuron used for testing was always omitted during the training/fit-
ting period (leave-one-out strategy). We refer to these models as 
‘tuned’ for specific datasets, as opposed to CASCADE’s ‘global EXC 
model’ that was trained on other datasets (Fig. 3). The Peeling and 
Jewell&Witten algorithms infer discrete spikes rather than spike 
rates, which might result in a slight disadvantage. To convert their 
output to continuous rates, predicted spikes were convolved with a 
Gaussian kernel of a width that minimized the mean squared error.

The tested algorithms showed systematic differences in perfor-
mance (Fig. 4a and Extended Data Fig. 7). A quantitative comparison 
across all datasets for a fixed noise level revealed that performance 
varied strongly across ground truth datasets, single neurons and 
algorithms (Fig. 4b and Extended Data Fig. 8). Neurons that could 
be predicted well by one algorithm could often also be predicted 
well by other algorithms (see Extended Data Fig. 8 for error and 
bias), suggesting that outlier neurons within datasets exhibit 
unusual properties that lead to biased predictions (Extended Data 
Fig. 4). The tuned CASCADE model and CASCADE’s EXC model 
produced good predictions for the broadest set of neurons across 
datasets. High-level performance of the model-based algorithms 
was observed in fewer datasets. For example, in multiple neurons 
from diverse datasets, the performance of MLSpike was lower than 
CASCADE (Fig. 4b; DS #7 and DS #8 (GCaMP6f in fish), DS #15 and 
DS #16 (GCaMP6s in V1) and DSs #24–26 (GCaMP6f in inhibitory 
neurons)). These datasets had relatively high (Table 1) and slowly 
changing spike rates rather than discrete bursts. Interestingly, the 
Peeling algorithm performed relatively well on some of these datas-
ets. To more directly compare the performances across neurons with 
CASCADE, we calculated the difference in correlation achieved by 
CASCADE and other algorithms for each neuron. The resulting dis-
tributions (Fig. 4c) show that CASCADE yielded better inferences 
for most neurons across all compared algorithms (P < 10−10 for all 
comparisons with other algorithms; P = 0.068 when compared to 
CASCADE’s global EXC model; paired Wilcoxon signed-rank test).

The performance of CASCADE was consistently better across 
different recording conditions. First, based on the finding that noise 
levels affect spike inference more strongly than other parameters 
(Supplementary Fig. 8), we repeated the benchmarking in Fig. 4b 
across multiple noise levels. Performance ranking across algorithms 
was largely maintained (Fig. 4d), with the global EXC model achiev-
ing performance close to the tuned CASCADE model (significant 
difference: P = 0.039, signed-rank test), followed by MLSpike, 
Peeling, Suite2p and CaImAn and then followed by Jewell&Witten 

(P < 10−10 for all algorithms). Although the error computed from 
CASCADE’s predictions was significantly lower than for most 
other algorithms (P < 0.005 for Jewell&Witten, Suite2p, MLSpike 
and CASCADE’s EXC model; P < 0.01 for CaImAn but P > 0.05 for 
Peeling; paired Wilcoxon signed-rank test), variability was high and 
relative effect sizes were low (Fig. 4e). Therefore, errors are not a 
very sensitive readout of performance. Finally, biases of predictions 
were negative (indicating underestimates of true spike rates) for 
all tuned model-based algorithms except for the tuned CASCADE 
model (Fig. 4f). CASCADE’s EXC model exhibited the smallest 
overall bias.

We further found that all algorithms systematically underes-
timated high spike rates. This effect was, on average, smallest for 
CASCADE. To visualize these results, we plotted the number of 
spikes for ground truth and predictions within each 2-s time bin 
(Supplementary Fig. 10) and extracted the median lines of these 
distributions (Fig. 4g). An underestimate of high spike rates might 
be expected because periods of high activity are rare; false-positive 
predictions of high spike rates might, thus, lead to larger perfor-
mance drops than false-negative omissions of rare events.

For spike inference evaluated at higher temporal precision, the 
performance (correlation with ground truth) dropped for all algo-
rithms, but this effect was more modest for CASCADE than for 
all model-based algorithms (Extended Data Fig. 9). We trained 
all algorithms to a ground truth that was smoothed in time to a 
variable degree (Gaussian smoothing kernel between σ = 0 ms and 
σ = 333 ms; default: σ = 200 ms). Example predictions highlight that 
several algorithms make impressive predictions also under these 
more difficult conditions (Extended Data Fig. 9a), but some algo-
rithms, in particular those based on discrete events (Peeling and 
Jewell&Witten), were not able to include graded certainties about 
spike times and, therefore, performed less well (Extended Data 
Fig. 9b). However, also the performance of MLSpike, CaImAn and 
Suite2p dropped faster than the performance of CASCADE when 
spike rates were evaluated with increasing temporal precision 
(Extended Data Fig. 9c).

Predictions of different algorithms were not only similar across 
neurons (Fig. 4b, Extended Data Fig. 8) but also exhibited corre-
lated temporal structure for predictions from the same neurons 
(Fig. 4h–j). The shared variability, measured as the median correla-
tion between predictions, was particularly high for the two closely 
related algorithms—Suite2p and CaImAn—but also for CASCADE 
and MLSpike. Indeed, the correlation between CASCADE and 
MLSpike was as high as the correlation between CASCADE and 
the ground truth (Fig. 4h, bottom). To better understand these 
similarities, we explored false predictions shared by algorithms and 
computed the similarities (correlation) of the unexplained, resid-
ual variances across algorithms. These shared errors were promi-
nent (Fig. 4i,j). In particular, errors made by CaImAn, Suite2p, 
Peeling and Jewell&Witten were often correlated, but CASCADE 
and MLSpike also shared a relatively large fraction of unexplained 
variance. We further divided the unexplained variance into false 
positives (predictions higher than the ground truth) and false nega-
tives (predictions lower than the ground truth). False negatives but 
not false positives were highly correlated across most algorithms, 
with the exception of Suite2p and CaImAn, which also shared false 
positives (Fig. 4j, right). Shared false negatives are clearly visible in 
typical predictions (red arrows in Fig. 4a and, more prominently, in 
Extended Data Fig. 7). Together, these analyses show highly similar 
predictions and similar missed spike events across algorithms. In 
summary, CASCADE predicted spike rates more accurately than all 
other algorithms across datasets, across noise levels and for different 
temporal precisions. Moreover, CASCADE showed a smaller bias 
toward underestimating high spike rates.

Finally, we compared practical aspects arising during the appli-
cation of different algorithms. With respect to processing speed,  
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we found that CASCADE (based on a GPU), CaImAn and 
Jewell&Witten performed similarly fast (200,000–300,000 samples  
per second). They were outperformed only by Suite2p (more than  

5 million samples per second), whereas Peeling (5,000 samples per  
second) and, in particular, MLSpike (800 samples per second) were 
much slower. For optimization, CASCADE uses back-propagation, 
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which is almost equally fast as inference, resulting in a total train-
ing time of less than 10 min for a typical ground truth dataset 
with 5 million data points and a realistic number of 20 iterations 
(epochs) through the dataset. For model-based algorithms, we 
performed extensive grid searches across parameters (usually in a 
two-dimensional parameter space with 100–500 parameter combi-
nations), which is feasible within minutes for Suite2p, CaImAn and 
Jewell&Witten. For Peeling and MLSpike, this procedure would take 
several days for a single model. We, therefore, reduced the num-
ber of training samples for MLSpike and Peeling to achieve search 
times of approximately 2 h per model for MLSpike. Furthermore, we 
found that best fit parameters for model-based approaches changed 
systematically with noise levels, suggesting that new models have 
to be fit for each noise level (Supplementary Table 1), an effect that 
was more pronounced for algorithms that do not use the noise level 
as an input (Suite2p and Jewell&Witten). For some model-based 
algorithms, we found that inferred spike rates were often tempo-
rally shifted to later time points, and this delay was variable  
across datasets (0.16 ± 0.14 s for MLSpike, 0.03 ± 0.09 s for Peeling, 
0.31 ± 0.23 s for CaImAn, 0.29 ± 0.22 s for Suite2p and 0.27 ± 0.19 s 
for Jewell&Witten; mean delay ± s.d. across datasets). We corrected 
these shifts for all analyses presented here. Such a correction is not 
necessary for a supervised algorithm such as CASCADE, which 
learns the correct shift from the ground truth. Together, these 
aspects reflect that, unlike model-based algorithms, CASCADE can 
make use of ground truth datasets in an efficient and natural way.

Application to population calcium imaging datasets. A trans-
formation of calcium signals into estimates of spike rates might 
be desired for multiple reasons. First, the reconstruction of spike 
rates can recover fast temporal structure in neuronal activity 
that is obscured by slower calcium signals4,5. Second, a method 
that infers spiking but ignores noise can eliminate shot noise and 
potentially other forms of noise without the detrimental effects of 
over-expressed indicators1 and without compromising temporal  
resolution. Third, although calcium signals usually represent  
relative changes in activity, spike rates provide absolute activity 
measurements that can be compared more directly across experi-
ments. With these potential goals in mind, we applied CASCADE 
to different large-scale calcium imaging datasets.

In a brain explant preparation of adult zebrafish24, we measured 
odor-evoked activity in the posterior part of telencephalic area Dp 
(pDp), the homolog of piriform cortex, using OGB-1. Multi-plane 
two-photon imaging43 was performed as in DS #04 at a noise level 
of 2.36 ± 0.97 (%·Hz−1/2; median ± s.d.) across 1,126 neurons. Under 
these conditions, predictions are expected to be highly accurate 
(Extended Data Fig. 4a,e; correlation to ground truth: 0.87 ± 0.06 
for a noise level of 2, median ± s.d.; Gaussian smoothing of the 
ground truth with σ = 0.2 s). Consistent with electrophysiological 
recordings44, spiking activity estimated by CASCADE with a model 
trained on DS #04 was sparse (0.6 ± 1.1 spikes during the initial 2.5 s 
of the odor response; mean ± s.d.; Fig. 5a) and variable across neu-
rons (Fig. 5b) and clearly different for the anatomically distinct dor-
sal and ventral regions of pDp (0.07 ± 0.11 Hz versus 0.21 ± 0.11 Hz; 
entire recording).

The comparison of ΔF/F signals and inferred spike rates showed 
that CASCADE detected phases of activity but effectively sup-
pressed small irregular fluctuations in activity traces, indicating 
that spike inference suppressed noise. Consistent with this inter-
pretation, spike inference by CASCADE increased the correlation 
between time-averaged population activity patterns evoked by the 
same odor stimuli in different trials (Fig. 5c,d).

Previous studies showed that odor-evoked population activity  
in pDp is dynamic44,45, but the fine temporal structure has not  
been explored in detail. We analyzed inferred spike rate patterns 
using unsupervised non-negative matrix factorization for sequence 

detection (seqNMF, ref. 46) to identify recurring short (2.5-s) 
sequences of population activity (factors) in the overall population 
activity. Factors showed rich temporal structure on a sub-second 
time scale (Fig. 5e). Multiple factors were active with high preci-
sion and in a stimulus-specific manner at distinct phases of the odor 
response. For example, factors 2 and 4 in Fig. 5e were transient and 
associated with response onset; factor 5 persisted during odor pre-
sentation; and factor 6 was activated after stimulus offset (Fig. 5e).  
Odor-evoked population activity, therefore, exhibited complex 
dynamics on time scales that cannot be resolved without temporal 
deconvolution. The transformation of calcium signals into spike rate 
estimates by CASCADE, thus, provides interesting opportunities to 
use calcium imaging for the analysis of fast network dynamics.

We next analyzed the Allen Brain Observatory Visual Coding 
dataset, comprising more than 400 experiments in mice with 
transgenic GCaMP6f expression, each consisting of approximately 
100–200 neurons recorded at very low noise levels (0.94 ± 0.25 
%·Hz−1/2; mean ± s.d.; Fig. 6a)47. Using the global EXC model of 
CASCADE, we estimated the absolute spike rates across all 38,466 
neurons from different transgenic lines (Fig. 6b and Extended Data 
Fig. 10; Gaussian smoothing of the ground truth with σ = 0.05 s). 
Spike rates were well described by a log-normal distribution cen-
tered around 0.1–0.2 Hz (Fig. 6c). Given the sampling rate (30 Hz) 
and noise level of this dataset, we expect a correlation of 0.89 ± 0.18, 
an error of 0.70 ± 0.96 and a bias of 0.27 ± 1.00 (median ± s.d. across 
neurons), based on our previous cross-dataset comparisons, which 
included transgenic lines used in this population imaging dataset 
(Fig. 3). Because generalization could not be tested across a large 
number of inhibitory neuron datasets (Fig. 3), we did not include 
inter neuron experiments in our analysis. Inferred spike rates varied 
systematically across cortical layers, with highest activity in layer 5  
(Fig. 6d,e). Inferred rates also varied across transgenic lines (Fig. 6d) 
and across stimuli presented, with highest activation during natu-
ralistic stimuli (natural scenes or movies; Fig. 6e). These results pro-
vide a comprehensive description of neuronal activity in the mouse 
visual system and reveal systematic differences in neuronal activity 
across cell types, brain areas, cortical layers and stimuli.

Raw ΔF/F often exhibited correlated noise, visible as a vertical 
striping in matrix plots, which was small for individual neurons but 
tended to dominate the mean ΔF/F across neurons, possibly due 
to technical noise or neuropil signal (Fig. 6f). CASCADE visibly 
eliminated these artifacts (Fig. 6g). As a consequence, correlations 
between activity traces of different neurons were reduced across all 
experiments by 38% ± 43% (mean ± s.d.; Fig. 6h; P < 10−15, paired 
signed-rank test). Using data simulated with NAOMi, we also found 
that spike inference by CASCADE brought measurements of pair-
wise firing rate correlations closer to the true values as compared 
to the raw calcium data (Supplementary Fig. 11). As many analyses 
of neuronal population activity require accurate measurements of 
pairwise neuronal correlations47,48, noise suppression and decon-
volution by spike inference can help to make these analyses more 
reliable. These examples illustrate how calibrated spike inference by 
CASCADE can be applied to remove noise from calcium signals and 
to analyze the temporal structure of neuronal population dynamics.

A user-friendly toolbox for spike inference. The deployment of 
spike inference tools often creates practical problems. First, the 
difficulty to set up a computational pipeline might prevent wide-
spread usage. We, therefore, generated a cloud-based solution using 
Colaboratory Notebooks that can be applied without local installa-
tions. We also set up a well-documented GitHub repository (https://
github.com/HelmchenLabSoftware/Cascade) containing ground 
truth datasets, pre-trained models, notebooks and demo scripts 
that can be easily integrated into existing analysis pipelines, such 
as CaImAn, SIMA or Suite2P38,41,49. Because the algorithm works on 
regular laptops and workstations without GPU support, the main 
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installation difficulties of typical deep learning applications are 
circumvented.

In a typical workflow, the noise level for each neuron in a cal-
cium imaging dataset is determined. Then, a model that has been 
pre-trained on noise-matched, resampled ground truth is loaded 
from an online library and applied to the ΔF/F data without any 
need to adjust parameters. CASCADE can be easily modified and 
retrained to address further specific needs, such as more complex 
loss functions23 or a modified architecture. Moreover, the resampled 
ground truth can be adapted directly if desired. For example, we 
used a Gaussian kernel to smooth the ground truth spike rate, but 
this standard procedure can be disadvantageous to precisely deter-
mine the onset timing of discrete events. In CASCADE, it is simple 
to replace the Gaussian kernel by a causal smoothing kernel to cir-
cumvent this problem (Supplementary Fig. 12).

A second problem is that experimenters might need additional 
tools and documentation for interpretation of the results. We, 
therefore, included graphical outputs and guiding comments that 
are accessible also for non-specialists throughout the demo scripts. 
Together with existing literature on the interpretation of raw cal-
cium data4,5,23,40,50, these tools will help to focus the attention on data 
quality and make users aware of the potentials and limitations of 
raw and deconvolved data.

Discussion
Any spike inference approach, in particular methods based on 
deep learning, critically depend on the availability and quality of 
ground truth data. We, therefore, created a ground truth database 
that is larger and more diverse than previous datasets16,19 (Fig. 1). 
Moreover, we developed CASCADE, a novel algorithm for spike 

inference based on deep learning. The central idea of CASCADE is 
to optimize the match between the training data and experimental 
datasets rather than to invest primarily into the optimization of the 
inference algorithm itself. Unlike previous supervised spike infer-
ence algorithms16,19,20, CASCADE is not trained on fixed ground 
truth data but resamples the ground truth to match both frame rate 
and noise level automatically for each neuron (Fig. 2). This strategy 
significantly improved inference, highlighting the importance not 
only of realistic calcium signals but also of realistic noise patterns.

The generalization of spike inference methods across unseen 
datasets was investigated sporadically13,14,22, but systematic studies 
were lacking, presumably due to the scarcity of ground truth data. 
We, therefore, took advantage of our large database to explore how 
predictions depend on species (zebrafish or mouse), indicator type, 
brain region (Fig. 3) and other potentially important experimen-
tal parameters. Surprisingly, some training datasets allowed for 
efficient generalization across these parameters, and a combined 
training dataset achieved uniformly high performance across all 
test sets. This result was obtained for both excitatory and inhibitory 
neurons, although absolute spike rates of inhibitory neurons were 
underestimated. The ‘global EXC model’, therefore, exhibits efficient 
generalization and is well suited for practical applications of spike 
inference in unseen datasets. Interestingly, some datasets performed 
poorly as training sets, whereas others performed poorly as test sets, 
even when compared against datasets with a similar indicator and/
or from the same brain region. These observations suggest that gen-
eralization is affected significantly by experimental differences that 
are difficult to identify, such as indicator concentration or baseline 
calcium concentrations. However, this problem can be overcome by 
training networks on a diverse ground truth database, indicating 
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that networks can learn to take these variations into account when 
sufficient information is provided during training.

In comparison to other approaches, spike predictions by 
CASCADE were more precise, as measured by correlation metrics,  
but also less biased toward underestimates of true spike rates  
(Fig. 4). We reason that reliable spike inference critically depends 
on the balance between spike detection and noise suppression. 
Although over-suppression appears to be advantageous in less 
expressive models, deep networks appear to afford less suppression 
because their high expressiveness allows for highly specific differ-
entiation between signal and noise. CASCADE exploits this feature 
while keeping the network size small, which prevents overfitting. In 
theory, it is possible that other algorithms outperform CASCADE 
in regimes that are not covered by the ground truth database (for 
example, extremely low noise levels or tonically spiking neurons that 
are transiently inhibited51). Our results also indicate that enhancing 
the diversity of ground truth datasets can be more efficient than 
simply increasing dataset size to achieve further improvements in 
performance (Extended Data Fig. 6).

CASCADE was not sensitive to user-adjustable hyper-parameters 
or the class of the deep networks tested, which has two practical con-
sequences. First, it seems more valuable to optimize the acquisition 
of more specific and diverse ground truth and the pre-processing 
of calcium data rather than to focus on improvements of the deep 
networks. Second, because hyper-parameters do not need to be 
adjusted by the user, the application of spike inference becomes 
simple in practice. Although some previous studies assumed that 
user-adjustable parameters in model-based algorithms increase the 
interpretability of the model11–14, we argue here that (1) biophysical 
model parameters are often ambiguous13 and, therefore, not directly 
interpretable, and (2) it is more important to focus on the interpret-
ability of the results rather than the model. To this end, our toolbox 
provides methods to estimate the expected error of the results and 
a detailed documentation in the Colaboratory Notebook with help 
for interpretation.

Quantitative inference of spike rates is critical for the analysis 
of existing and future calcium imaging datasets4,5,23. The approach 
usually requires single-neuron resolution and is less well suited 
for signals from multiple neurons, such as endoscopic one-photon 
data with high background fluorescence, fiber photometry or 
wide-field imaging. Moreover, ΔF/F can, in theory, report only 
spike rate changes. Nevertheless, we found that absolute spike 
rates can be inferred when the baseline activity is sufficiently 
sparse to enable the determination of the fluorescence baseline 
level F0, which was the case in all datasets examined here (Figs. 
5 and 6). The enhanced temporal resolution will be particularly 
useful for the analysis of neuronal activity during natural stimulus 
sequences and behaviors that occur on time scales shorter than 
typical durations of calcium transients, such as dynamical neuro-
nal representations across theta cycles52 or early and late phases of 
sensory responses in cortical areas53. Moreover, the inference of 
absolute spike rates will help improve the calibration of precisely 
patterned optogenetic manipulations54,55 and the extraction of 
constraints—for example, absolute spike rates—for computational 
models of neural circuits.

The reliability of spike inference obviously depends on the 
recording quality of the calcium imaging data. Future work should, 
thus, focus on the reduction of movement artifacts and neuropil con-
tamination both by experimental design40,56 and by extraction meth-
ods38,39, including the correct estimation of the F0 baseline despite 
unknown background fluorescence. In the long term, the develop-
ment of more linear calcium indicators57 and especially the acquisi-
tion and integration of more specific ground truth—for example, for 
additional interneurons and subcortical brain regions—will enable 
quantitative spike inference for an even broader set of experimental 
conditions. We envision that our set of ground truth recordings will 

become enlarged over time, allowing to train more and more spe-
cific models for reliable inference of spike rates.
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Methods
Ground truth recordings in adult zebrafish. All zebrafish experiments were 
approved by the Veterinary Department of the Canton Basel-Stadt (Switzerland). 
For the recordings in DS #04 and DS #05, the adult zebrafish brain was dissected ex 
vivo24, and OBG-1 AM or Cal-520 AM were injected in pDp as described58. The dura 
mater above pDp was carefully removed to prevent clogging of the patch pipette. 
Calcium indicators were injected for 1–2 min at two locations (injection 1: ∼210 μm 
dorsal from the ventralmost aspect of Dp and ∼130 μm from the lateral surface of 
Dp; injection 2: 180 μm and 60 μm, respectively) and was monitored by snapshot 
multi-photon images. The pressure was adjusted to avoid fast swelling of the tissue.

Juxtacellular recordings were performed >1 h and <4 h after the dye injection. 
Patch pipettes were pulled from 1-mm borosilicate glass capillaries (Hilgenberg) 
with a resistance of 5–8 MΩ and backfilled with artificial cerebrospinal fluid (ACSF)  
(in mM: 124 NaCl, 2 KCl, 1.25 KH2PO4, 1.6 MgSO4, 22 D-(+)-glucose, 2 CaCl2,  
24 NaHCO3; pH 7.2; 300–310 mOsm) containing 0.05 mM Alexa Fluor 594.

The explant preparation was rotated about the anterior–posterior axis to 
allow for optical access from the side (sagittal imaging). Using a multi-photon 
microscope, images generated from fluorescence and from the asymmetry of the 
signal on a four-quadrant detector for transmitted light were used to target the 
pipette to pDp, while continuous low pressure (30–40 mbar) was applied to prevent 
clogging. The pipette then entered the tissue with initial high pressure (90–110 mbar)  
that was lowered after a few seconds. Neurons were approached using the 
shadow-patching technique45,59 but with lower pressure. Juxtacellular recordings 
were performed after establishing a loose seal (typically 30–50 MΩ) with a target 
neuron. In some cases, a small negative pressure was applied initially to improve 
the electrical contact with the target cell. In several cases, micropipettes were 
reused multiple times. Recordings were performed in voltage-clamp mode with the 
voltage adjusted such that the resulting current approximated zero60.

For DSs #06–08, which were based on a transgenic line expressing GCaMP6f in 
the forebrain43, the experimental procedures were similar except for the injection 
of synthetic dyes. Because the baseline brightness of GCaMP6f is low, it was 
often difficult to identify individual neurons. Upon application of odor stimuli, 
stimulus-responsive neurons that expressed GCaMP6f became brighter, which 
permitted reliable visual identification for targeted patching. For regions in the 
dorsal telencephalon (DS #07) with no obvious odor responses, cells were patched 
randomly based on shadow images generated by the blown-out Alexa dye59.

Simultaneous recordings of fluorescence and extracellular spikes of the same 
neuron were synchronized using ScanImage 3.8 for imaging61 and Ephus for 
electrophysiology62. Calcium imaging was performed at intermediate zoom (Fig. 1) 
with a frame rate of 7.5 Hz or 7.8125 Hz for DS #04 and DS #05 and at high zoom 
with a framerate of 30 Hz for DSs #06–08. Electrophysiological recordings were 
low-pass filtered at 4 kHz (4-pole Bessel filter) and sampled at 10 kHz.

Recordings were performed in 120-s episodes, and food extract was applied to 
the nose as described45. In pDp, spike rates are usually very low. When no spiking 
activity was observed, the holding potential of the pipette was set to higher values 
(between +5 mV and +30 mV) to generate a depolarizing extracellular current that 
generated spikes if the seal resistance was sufficiently high. If no spikes could be 
elicited over the full duration of the recording, the recording was not included in 
the ground truth dataset.

Anatomical location in zebrafish ground truth datasets. DS #04: OGB-1,  
injected in the posterior part of the olfactory cortex homolog (pDp) in 
adult zebrafish. Recordings were performed throughout dorsal and ventral 
compartments of pDp, and OGB-1 was injected as described58. Because OGB-1 
localizes predominantly to the nucleus and because the resolution was high, 
neuropil contamination is negligible in this dataset.

DS #05: Cal-520, injected in the posterior part of the olfactory cortex homolog 
(pDp) in adult zebrafish. Same brain region as DS #03. Unlike OGB-1, Cal-520 is 
primarily cytoplasmic, resulting in considerable neuropil contamination. Cal-520 
spread less than OGB-1 after injection and labelled only a small central volume  
in pDp.

DS #06: tg(NeuroD:GCaMP6f), anterior part of the olfactory cortex homolog 
(aDp) in adult zebrafish. In this transgenic line, GCaMP6f is strongly expressed 
throughout Dp. Recording location and frame rate were chosen to match previous 
experiments45.

DS #07: tg(NeuroD:GCaMP6f), dorsal part of the dorsal pallium in adult 
zebrafish. All recorded neurons were mapped onto brain regions Dm, Dl, rDc 
and cDc based on neuroD expression in the dorsal part of the dorsal pallium 
(Supplementary Fig. 13, following Huang et al.63). Although this region is not 
known to be directly involved in olfactory processing, we noticed that several 
neurons were inhibited during odor stimulation (duration, 10–30 s).

DS #08: tg(NeuroD), olfactory bulb (OB) in adult zebrafish. In the OB of this 
transgenic line, GCaMP6f is restricted to a distinct, small subset of putative mitral 
cells and interneurons43. Neurons 1–3, 5 and 7 were identified as interneurons 
based on their small size and morphology, whereas neurons 4, 6, 8 and 9 were 
classified as putative mitral cells.

Ground truth recordings in anaesthetized mice. All experimental procedures 
related to DS #18 and DS #19 were approved by the Cantonal Veterinary Office 

in Zurich (Switzerland). Mice were kept on a reversed 12-h light/dark cycle. For 
virus-induced expression of R-CaMP1.07 (DS #19), AAV1-EFα1-R-CaMP1.07 
and AAV1-EFα1-DIO-R-CaMP1.07 were stereotactically injected under isoflurane 
anaesthesia into the barrel cortex of C57BL/6J mice and into hippocampal area 
CA3 of tg(Grik4-cre)G32-4Stl mice as described26. We combined electrophysiology 
and calcium imaging in acute experiments in anaesthetized animals (n = 3; at least 
2 weeks after virus injection) as described26. A stainless steel plate was fixed to the 
exposed skull using dental acrylic cement. A 1 × 1 mm2 craniotomy was made over 
the barrel cortex. The dura mater was cleaned with Ringer’s solution (containing 
in mM: 135 NaCl, 5.4 KCl, 1.8 CaCl2, 5 HEPES, pH 7.2 with NaOH) and carefully 
removed. To reduce tissue motion caused by heartbeat and breathing, the 
craniotomy was filled with low-concentration agarose gel and gently pressed with 
a glass coverslip. For CA3 recordings (DS #18), a 4-mm Ø craniotomy was centred 
over the injection site. The overlying cortex was aspirated until the corpus callosum 
became visible. The cavity was filled with 1% agarose to reduce tissue motion. 
Juxtacellular recordings from R-CaMP1.07-expressing neurons were obtained 
with glass pipettes (4–6 MΩ tip resistance) containing Ringer’s solution. For 
pipette visualization, Alexa Fluor 488 (Invitrogen) was added to the solution, or 
pipettes were coated with BSA Alexa Fluor 594 (Invitrogen). Action potentials were 
recorded in current-clamp using an Axoclamp 2B amplifier (Axon Instruments, 
Molecular Devices) and digitized at 10 kHz using Clampex 10.2 software. Calcium 
recordings were performed using HelioScan64.

The care of animals and experimental procedures related to DS #03 were 
carried out in accordance with national and institutional guidelines, and all 
experimental protocols were approved by the Animal Experimental Committee 
of the University of Tokyo. Mice were kept in a non-inverted 12-h light/dark 
cycle. Ambient temperature and humidity of the animal room were controlled at 
20–25 °C and 40–60%, respectively. C57BL6/J male mice were anaesthetized by 
intraperitoneal injection of 1.9 mg g−1 urethane, and the skull was partly exposed 
and attached to a stainless steel frame as described27. In a small craniotomy over 
the barrel cortex, we removed the dura, filled the cranial window with 1.5% 
agarose and placed a coverslip over the agarose to minimize brain movements27. 
Cal-520 AM together with an Alexa dye were bolus-loaded in layer 2/3 of the 
barrel cortex (200–300 μm deep below the surface) and monitored by two-photon 
imaging on the Alexa channel27. Calcium imaging was performed more than 
30 min after dye ejection. For simultaneous calcium imaging and loose-seal 
cell-attached recordings, we filled glass pipettes (5–7 MΩ) with the extracellular 
solution containing Alexa Fluor 594 (50 μM), inserted pipettes into the barrel 
and targeted Cal-520-loaded somata. Approximately 10 min after establishing the 
loose-seal cell-attached configuration, we performed simultaneous recordings and 
high-speed line-scan calcium imaging (500 Hz) on the soma of cortical neurons as 
described27. The electrophysiological data were filtered at 10 kHz and digitized at 
20 kHz by using MultiClamp 700B and DigiData 1322A (Molecular Devices) and 
acquired using AxoGraph X (AxoGraph).

Experiments for DSs #24–27 were approved by the Veterinary Department 
of the Canton Basel-Stadt (Switzerland). Mice were kept on an inverted light 
cycle. DSs #24–26 were recorded in slices of mouse visual cortex as described28. 
Inhibitory neurons were targeted by injecting GCaMP6f-expressing AAV1 virus 
into PV-Cre, VIP-Cre or SOM-Cre mice. Coronal slices were cut with a thickness 
of 350 µm, and loose-patch recordings were performed at 32 °C in ACSF with 
WinWCP software (John Dempster). To induce activity in otherwise quiet slices, 
a potassium-based solution was applied to the slice through a second pipette. 
Simultaneous calcium imaging was performed with a two-photon microscope 
recording at 34 Hz through a ×16 water immersion objective (0.8 NA, Nikon)28. 
DS #27 was recorded in anaesthetized mice as described65. Adult (>8 weeks) 
PV-tdTomato mice (cross between Rosa-CAG- LSL-tdTomato (JAX: 007914) and 
PV-Cre (JAX: 008069)) were injected with GCaMP6f-AAV (AAV1.Syn.GCaMP6f.
WPRE.SV40, UPENN) in primary visual cortex (V1, ~2.5 mm lateral, ~0.7 mm 
anterior of the posterior suture). Acute recordings were performed at least 2 
weeks after the initial injection. Mice were initially anaesthetized with a mixture 
of fentanyl (0.05 mg ml−1), midazolam (5.0 mg kg−1) and medetomidin (0.5 mg 
kg−1); a metal headplate was fixed on the skull; and a craniotomy was made above 
V1. Anaesthesia was maintained with a low concentration of isoflurane (0.5% in 
O2). Borosilicate glass pipettes (6–8 MΩ) filled with a solution containing 110 mM 
potassium gluconate, 4 mM NaCl, 40 mM HEPES, 2 mM ATP-Mg, 0.3 mM 
GTP-NaCl and 0.03 mM Alexa Fluor 594 (adjusted to pH 7.2 with KOH, ∼290 
mOSM) were lowered into the visual cortex. Neurons expressing GCaMP6f and 
tdTomato were targeted for juxtacellular recordings in loose-cell configuration 
under a two-photon microscope. For simultaneous electrophysiological and optical 
recordings, fluorescence was recorded with ScanImage61 at 30 Hz, and juxtacellular 
voltage was recorded using a MultiClamp 700B amplifier (Axon Instruments). 
Signals recorded in slices were filtered at 1 kHz or 2 kHz, and signals recorded 
in vivo were filtered at 10 kHz before digitization at 20 kHz (National Instruments). 
50-Hz noise was reduced by a noise eliminator (HumBug).

All experimental procedures for DS #02, DS #22 and DS #23 were performed 
in accordance with National Institutes of Health guidelines and approved by the 
Animal Care and Use Committee at the University of California, Berkeley. Mice 
were kept on a non-reversed 12-h light/dark cycle. These datasets were recorded 
in mouse primary visual cortex as described29. GFP-GIN mice were used to target 
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SOM interneurons; PV-Cre mice crossed with loxP-flanked tdTomato reporter 
mice were used to target PV interneurons; and CaMKIIα-Cre mice crossed with 
loxP-flanked tdTomato mice were used to target excitatory neurons. One hour 
after loading of OGB-1 into V1 (ref. 29), two-photon microscopy was used to 
target neurons 150–300 µm below the brain surface with the recording pipette, 
while the mouse was anaesthetized with intraperitoneal injection of urethane 
and chlorprothixene. Two-photon imaging of neurons was performed with a ×40 
objective at a frame rate of 15.6 Hz, while voltage was recorded in a loose-cell 
configuration from the same neuron as described29.

Analysis of ground truth recordings. Movies of calcium indicator fluorescence 
were corrected offline for movement artifacts (slow drifts due to relaxation of the 
brain tissue for zebrafish data; fast movements for recordings in anaesthetized 
mice). Ground truth recordings from DS #03 were not corrected for movement 
artifacts due to the scanning modality (line-scan). Thereafter, ROIs were manually 
drawn using a custom-written software tool (https://git.io/vAeKZ)45 for each trial 
to select pixels that reflected the calcium activity of the neuron. Fluorescence traces 
were extracted either as average across the ROI or individually for each pixel to 
allow for both natural and artificial sub-sampling of calcium signal noise levels 
(Supplementary Fig. 2).

Spike times were extracted from juxtacellular recordings using a 
custom-written template-matching algorithm. In brief, peaks of the first derivative 
of a 1-kHz filtered electrophysiological signal were detected using a threshold that 
differed between recordings and that was manually adjusted to safely exclude false 
positives. The original waveforms of the detected events were then averaged and 
used in a second step as a template to detect all events across the full recording 
more precisely via cross-correlation of the template with the original signal. A 
manually adjusted threshold for each neuron extracted action potential events. The 
process of first generating a template that was afterwards used to detect stereotypic 
signals increased the signal-to-noise of detected events, similarly to previous usages 
of template matching in electrophysiology66,67.

Quality control. All electrical spiking events were inspected visually and 
compared to simultaneously recorded calcium transients. Any recordings 
that were ambiguous due to low electrophysiological signal-to-noise of action 
potentials were discarded. Calcium recordings with excessive movement 
artifacts or apparent inconsistencies of juxtacellular and calcium recordings were 
discarded entirely. Excessive movement artifacts were defined as events when the 
neuron visibly moved out of the imaging plane, such that transients generated 
by these movements were almost as frequent and prominent as true calcium 
transients. Apparent inconsistencies of recordings were identified as recordings 
where no spike events corresponded to visible calcium transients and where a 
spike-triggered average (Extended Data Fig. 1) did not show any signal, indicating 
that juxtacellular and calcium recordings were performed from different neurons. 
In addition, neurons were discarded when they did not spike at all even after 
application of currents or when they became visibly brighter after establishing 
a loose seal due to unknown, possibly mechanical, reasons. When the calcium 
recording clearly contained events without corresponding electrophysiological 
action potentials, the calcium trace of the manually drawn ROI and the calcium 
traces of adjacent neurons or neuropil were inspected together with the 
electrophysiological recordings to assess optical bleed-through, and ROIs were 
adjusted if necessary to avoid contamination. Occasionally, we also noted that 
mechanical stress exerted by the recording pipette can increase the brightness 
of the recorded neuron31, possibly by the release of calcium from internal stores. 
Recordings made during and after such events were discarded. Bursting can lead 
to adaptation of the extracellularly measured spike amplitude. Such recordings 
(for example, in DS #18 with bursts of more than ten action potentials with an 
inter-spike interval of approximately 5 ms) were carefully inspected for missed 
low-amplitude action potentials, in particular during these bursts.

Extraction of ground truth from publicly available datasets. Additional ground 
truth was extracted from publicly available datasets and quality controlled for each 
neuron16,19,30,32–34.

The Allen Institute datasets. For DSs #10–13 from ref. 30, raw fluorescence traces 
were extracted from the processed datasets, which were downloaded from https://
portal.brain-map.org/explore/circuits/oephys. Neuropil signal was subtracted using 
the same standard scaling value for all neurons to make recordings comparable 
with other datasets (neuropil contamination ratio, 0.7), despite the caveats 
associated with this procedure30. A 6-s running 10% lowest percentile window 
was typically used to compute F0 for ΔF/F0 calculation, but percentile values were 
adjusted to the noisiness of the recording and over window durations that were 
adjusted to the baseline activity. Simultaneous juxtacellular and calcium imaging 
recordings were inspected for each ground truth neuron together with the raw 
movie as described in the Methods subsection ‘Quality control’.

The Spikefinder datasets. For DS #01, DS #15 and DS #16 from ref. 19, the ground 
truth recordings at their native sampling rates as released during the Spikefinder 
challenge16 were processed. This Spikefinder dataset consists of five separate 

datasets. Spikefinder datasets #1 and #4 were excluded because fluorescence 
baseline and scaling were unknown. The other datasets were extracted as 
fluorescence traces, and F0 was computed as the 10th percentile value (adjusted 
depending on the spike rate of each neuron) and used to compute ΔF/F0. Some 
ground truth neurons were discarded due to a highly unstable fluorescence 
baseline, but no strict quality control was possible because the raw calcium imaging 
data were not available. As found previously, some datasets of the Spikefinder 
challenge come with calcium recordings that are delayed with respect to the 
electrophysiological recordings16. We, therefore, manually corrected for delays of 
the calcium recording with respect to the electrophysiological recording based on 
visual alignment of extracted linear kernels. The same correction delay was applied 
across all neurons of a given dataset.

The GENIE datasets. DS #09, DS #014, DS #017, DS #20 and DS #21 were 
downloaded from http://crcns.org/data-sets/methods32–34,68,69. For DS #09 and DS 
#14 (ref. 34), ROIs were extracted from raw calcium imaging data using the same 
approach as described above for R-CaMP1.07 data. Recordings with excessive 
movement artifacts or apparent inconsistencies of juxtacellular and calcium 
recordings were discarded entirely. Neuropil signal was subtracted using the same 
standard scaling value for all neurons (neuropil contamination ratio, 0.7)34. F0 
values were computed using percentile values that were adjusted to the noisiness 
of the recording and over window durations that were adjusted to the baseline 
activity.

For DS #17, DS #20 and DS #21, no raw calcium imaging data were available, 
therefore not allowing for strict quality control using raw calcium recordings as 
additional feedback. Neuropil signal was subtracted from raw fluorescence using 
the same standard scaling value for all neurons (neuropil contamination ratio, 
0.7)32,33. F0 values were computed using percentile values that were adjusted to 
the noisiness of the recording and over window durations that were adjusted to 
baseline activity.

Population calcium imaging with OGB-1 in zebrafish pDp. Ex vivo preparations, 
OGB-1 AM injections and calcium imaging were performed as described for 
juxtacellular recordings. Calcium imaging was performed using a custom-built, 
multi-plane, multi-photon microscope based on a voice coil motor for fast 
z-scanning43. Laser power below the objective was 29–35 mW (central wavelength, 
930 nm; temporal pulse width below the objective, 180 fs), with higher laser power 
for deeper imaging planes.

Imaging in Dp was performed in eight planes (256 × 512 pixels, approximately 
100 × 200 µm) at 7.5 Hz over a z-range of approximately 100 µm. Due to slowly 
relaxing brain tissue, movement correction was applied every 5 min by acquiring 
local z-stacks with a z-range of ±6 µm. The maximum cross-correlation between a 
reference stack acquired before the experiment and the local z-stack indicated the 
optimal positioning, which was targeted using the stage motors of the microscope.

For odor stimulation, amino acids (His, Ser, Ala and Trp, Sigma-Aldrich) were 
diluted to a final concentration of 10−4 M, and bile acid (TDCA, Sigma-Aldrich) 
was diluted to 10−5 M in ACSF immediately before the experiment. Food extract 
was prepared as described45. Odors were applied for 10 s through a constant stream 
of ACSF using a computer-controlled peristaltic pump45 in pseudo-random order 
with three repetitions of each odor presentation.

Extraction of linear kernels from ground truth data. Linear kernels were 
extracted by regularized deconvolution using the deconvreg(Calcium,Spikes) 
function in MATLAB (MathWorks). This function computes the kernel, which, 
when convolved with the observed Spikes, results in the best approximation of the 
Calcium trace.

To compute the variability of linear kernels across neurons within and across 
datasets (Extended Data Fig. 1), we split the ground truth recording of each neuron 
in five separate parts and computed the linear kernels for each of the segments 
separately. When the coefficient of variation across these five values was less 
than 0.5, the kernel amplitude was considered reliable and included in the plots 
(Extended Data Fig. 1).

Computation of noise levels. In the shot noise limited case, the mean fluorescence 
F0 scales with N, which is the number of photons collected by the detector 
per second, and the fluorescence baseline fluctuations σF scale with √N. Thus, 
the ΔF/F baseline noise σΔF/F = σF/F0 scales with 1/√N. If the fluorescence signal 
is sampled at frame rate fr and the number of photons collected per frame reduces 
to N/fr, thus σΔF/F scales with √fr. To define a noise measure that is independent of 
frame rate, we, therefore, normalized σΔF/F for this shot noise effect and defined the 
standardized noise ν as:

ν =

σΔF/F
√

fr
=

Mediant |ΔF/Ft+1 − ΔF/Ft|
√

fr
(1)

The units for ν are %·Hz−1/2, which, for the purpose of readability, we omit in 
the text. When computed for ΔF/F data in this way, ν is quantitatively comparable 
across datasets. A value of ν = 1 indicates a very low noise level, whereas ν = 8 
indicates a high noise level, independent of frame rate.
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Metrics to quantify performance of spike inference. The ground truth spike rates 
were generated from discrete spikes by convolution with a Gaussian smoothing 
kernel (except in Supplementary Fig. 12, where a non-Gaussian, causal kernel was 
applied). The precision of the ground truth was adjusted by tuning the standard 
deviation of the smoothing Gaussian (σ = 0.2 s for 7.5-Hz recordings and σ = 0.05 s 
for 30-Hz recordings). The ground truth spike rate was then compared to the 
inferred spike rate.

There is no single metric to reliably reflect the goodness of performance of 
a spike inference algorithm. Correlation between the inferred spike rate and the 
ground truth is widely used16 but does not contain information about absolute 
scaling or offsets. F1 scores combine false positives and false negatives12 but are 
difficult to compare across datasets when the baseline spike rates vary (which 
is the case for our database). Other metrics try to combine the strengths of the 
correlation measure with a sensitivity to the correct number of spikes70 but are less 
intuitive.

We defined three intuitive and complementary metrics (illustrated as 
color-coded equations in Supplementary Fig. 3). First, we used Pearson’s 
correlation between ground truth spike rates and inferred spike rates as a standard 
measure of the similarity. Second, the relative error (abbreviated as error) results 
from the sum of false positives and false negatives when subtracting the ground 
truth from the inferred spike rate, normalized by the absolute number of spikes in 
the ground truth. For example, an error of 0.7 would indicate that the number of 
either incorrectly inferred or omitted spikes is about 70% of the number of spikes 
in the ground truth. Third, the (relative) bias is defined as the difference of false 
positives and false negatives, again normalized by the absolute number of spikes 
in the ground truth. Algorithms that systematically underestimate spike rates will 
tend toward the minimum of the bias, −1, whereas other algorithms might tend to 
systematically overestimate spike occurrences (bias >0). Importantly, the error can 
be very high when the number of false positives and false negatives is high, but the 
bias might still be zero. Error and bias are, therefore, two metrics that describe the 
absolute errors in terms of spike rates, complementing the correlation metric.

Architecture of the default convolutional network. The default network consists 
of a standard convolutional network with six hidden layers, including three 
convolutional layers. The input consists of a window of 64 time points symmetric 
around the time point for which the inference is made. The three convolutional 
layers have relatively large but decreasing filter sizes (31, 19 and 5 time points), 
with an increasing number of features (20, 30 and 40 filters per layer). After the 
second and third layer, maximum pooling layers are inserted. A final densely 
connected hidden layer consisting of ten neurons relays the result to a single output 
neuron. Although all neurons in hidden layers are based on ReLUs, the output 
neuron is based on a linear identity transfer function. In total, the model consists 
of 18,541 trainable parameters.

The properties of the calcium imaging data are accounted for by resampling 
the ground truth with the appropriate noise levels and the matching frame rate. 
The ground truth is smoothed to facilitate gradient descent with a time-symmetric 
Gaussian kernel of standard deviation 0.2 s for resampling at 7.5 Hz (unless 
otherwise indicated), and 0.05 s for 30 Hz, or with a causal kernel (inverse Gaussian 
distribution).

Training deep networks for spike inference. To train the deep networks, the 
mean squared error between the smoothed ground truth spike rates and inferred 
spike rates was used as the loss function. This loss function optimizes not only 
the similarity of both signals (correlation) but also the absolute magnitude of the 
inferred spike rates. Based on errors computed via back-propagation, gradient 
descent was performed using a standard optimizer (adagrad; Supplementary Fig. 
4). Based on a given resampled ground truth dataset, the network was trained using 
every single data point from this set, completing an epoch. Typically, training lasted 
for 10–20 epochs (except when analyzing overfitting; Supplementary Figs. 4 and 5).

In all spike inferences presented here, without exception, a leave-one-out 
strategy was employed. For example, to infer the spike rates of a given neuron 
in a dataset, the network was trained on all neurons of this dataset except the 
neuron of interest. To infer spike rates for a given set of datasets, the training 
set always excluded the dataset for which inferences were made. This strategy 
of cross-validation is crucial and strictly distinct from the process of fitting 
parameters for a neuron or a dataset, which would yield better results for a given 
neuron but would fail to generalize to new data.

Architecture of alternative deep learning networks. All deep learning 
architectures (Supplementary Fig. 5) were trained with the same loss function, the 
same input and the same optimizer as the default network.

Small convolutional filters network: same architecture as the default network, 
with the only difference that smaller convolutional filter sizes were used (15, 9 and 
3) instead of (31, 19 and 5). Total of 9,891 trainable parameters.

Single convolutional layer network: the first convolutional layer of the default 
network, a single max pooling layer and a single dense layer of ten neurons. Total 
of 1,021 trainable parameters.

Deeper convolutional network (five convolutional neural network (CNN) 
layers): five convolutional layers with filter sizes (11, 9, 7, 5 and 3) and filter 

numbers (20, 30, 40, 40 and 40), three max pooling layers after the second, fourth 
and fifth convolutional layers and a final dense layer expansion of ten neurons. 
The reduction of the filter sizes compared to the default network is necessary 
because no zero-padding was applied, resulting in a decrease of the size of the 
one-dimensional trace with increasing layer depth. Total of 27,421 trainable 
parameters.

Deeper convolutional network (seven CNN layers): seven convolutional layers 
with filter sizes (7, 6, 5, 4, 3, 3 and 3) and filter numbers (20, 30, 40, 40, 40, 40 and 
40), three max pooling layers after the second, fifth and seventh convolutional 
layers and a final dense layer expansion of ten neurons. Total of 31,221 trainable 
parameters.

Batch normalization: same as the default network with batch normalization71 
for regularization after each convolutional and dense layer but before the 
respective ReLU transfer functions of each network layer. Total of 18,741 trainable 
parameters.

Locally connected network: same as the default network but with locally 
connected filters instead of convolutional filters. For convolutional filters, filter 
weights are shared across each position in the image space (here, in the temporal 
window), whereas the filters are different for each position for locally connected 
networks. The rationale behind this architecture is that different filters can be 
learned for each position, which is intuitive given that spike detection is not 
invariant to the position of the calcium transient in the window. Using different 
weights for each position of the filter sets results in a total of 229,231 trainable 
parameters.

Naive LSTM model: LSTM units are complex neuronal units with internal 
states and gates that are used in recurrent networks to overcome the problem of 
vanishing gradients when back-propagating through time72,73. The time points 
of the input window are sequentially fed into the recurrent network, which are 
processed by the recurrent network, with earlier time points retained through 
recurrent activity or LSTM states and used to activate the network for processing of 
later time points. The investigated model consisted of two layers of each 25 LSTM 
units with ReLU as activation functions, followed by a simple dense expansion 
layer of 50 neurons with ReLU activation functions. Total of 4,051 trainable 
parameters.

Bi-directional LSTM model: the time points of the input window (64 data 
points) are split into past (32 data points) and future (32 data points) with respect 
to the time point used for spike inference (‘presence’). Past and a reversed version 
of the future are each fed into a recurrent network based on a single layer of 25 
LSTM units (with ReLU activations), such that the time point closest to ‘presence’ 
is fed in last74,75. The output of the two recurrent networks for past and future is 
concatenated and connected with a dense fully connected layer of 50 simple units 
(ReLU activations). Total of 8,001 trainable parameters.

Linear network: same as the default network but with linear activation 
functions instead of ReLUs. The network is, therefore, entirely linear but based on 
the same architecture (connectivity). Total of 18,541 trainable parameters.

Discretization of spiking probabilities. To obtain discrete spiking events from 
inferred probabilities, a brute-force fitting procedure was applied. The Gaussian 
kernel used to smooth the ground truth was used as a prior for the inferred spike 
rate that corresponds to a single action potential. The fit, therefore, consisted of 
optimally fitting a set of Gaussian kernels of the expected width and height to 
the inferred spike rate. We made a first guess that was then optimized by random 
modifications. The first guess was generated using Monte Carlo importance 
sampling, such that the overall number of discrete spikes matched the integral of 
inferred probabilities. Next, events were ranked in how they contributed to the 
fit by comparing the fit quality when single events were omitted. Lowest-ranking 
events were discarded and replaced by newly drawn events, again using importance 
sampling based on the residual probability distribution. Finally, each spike 
was shifted randomly over the entire duration, and the best fit was used. This 
approach is relatively slow but results in a reliable fit. To speed up the procedure, 
spiking probabilities were divided in continuous sequences of non-zero support 
(divide-and-conquer strategy). For Supplementary Fig. 7 and to allow for 
comparison against raw inferred spike rates, the resulting discrete spikes were 
convolved with the Gaussian smoothing kernel that was used to generate the 
ground truth. We provide a demo script that infers discrete spikes from spike rates 
predicted with CASCADE (available on GitHub: https://git.io/JtZe4).

Generalized linear model to fit predictability across datasets. To predict how 
well a model trained on a given ground truth dataset (for example, DS #08) is 
able to infer activity for another dataset (for example, DS #14), a set of descriptors 
(regressors) was extracted for each dataset, and a generalized linear model 
(GLM) was trained to predict this relationship based on the regressors of the two 
respective datasets (Supplementary Fig. 9). In total, eight predictors were used, 
separately or together.

First, indicator species was set to 1 if the training and test datasets had the same 
indicator species (synthetic dyes versus genetically encoded dyes) and 0 otherwise. 
Animal species was set to 1 if the training and test datasets had the same animal 
species (zebrafish versus mouse) and 0 otherwise. Spike rate was computed as the 
absolute difference between median spike rates across neurons from the training 
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and test datasets. Burstiness was computed as the number of spikes that were spike 
within 50 ms of the timing of a given spike. This metric quantifies the likelihood 
that a given spike is surrounded by other spikes. The Fano factor was computed by 
dividing the variance of inter-spike-intervals (ISIs) by the mean of ISIs76. Measured 
Fano factors were broadly distributed across datasets with a median of 3.7 and a 
standard deviation of 5.9 and an outlier dataset, DS #18, in mouse CA3 with a Fano 
factor of 30.0. The area of the linear kernel was computed by summing up the area 
under the curve for the extracted linear kernel for each dataset. The kernel decay 
constant was computed without exponential fit by measuring the time between rise 
and decay time of the kernel directly. Rise and decay time points were identified by 
finding the first and last time point where the kernel surpassed 1/e of its maximum 
amplitude. The correlation time course was computed as the correlation between 
the kernels of training and test dataset.

The GLM was fitted based on these regressors using the glmfit() command in 
MATLAB with an identity linker function.

Artificial ground truth generated with NAOMi. The package NAOMi was used 
to generate simulated two-photon calcium recordings of neurons with known 
spike patterns40. These simulated datasets were used as ground truth to train 
CASCADE (Fig. 3) but also to test the effect of spike inference with CASCADE 
on the estimated pairwise correlations between neurons (Supplementary Fig. 11). 
We used the default parameters, which had been optimized for the simulation of 
GCaMP6f based on previous calibrations34. Artificial ground truth was generated 
at 30 Hz with a detection NA of 0.6 and an excitation NA of 0.8 at a depth of 
100 µm below the cortical surface, in a volume of 250 × 250 × 100 µm3. To increase 
the signal-to-noise ratio of the simulated recordings, we used a relatively high 
simulated laser power of 70 mW. We simulated recordings of the central plane of 
five such volumes over a duration of 166 s. We extracted the cleanest components 
of each simulation by selecting the spatial components (from the ideal components 
returned by NAOMi) that correlated most highly with the known ground truth 
signals (correlation with a known somatic ground truth signal >0.80). We chose to 
only include the best-matching components because other components typically 
had much stronger neuropil contamination than our experimentally obtained 
ground truth recordings. Then, we extracted the fluorescence of the selected 
components and performed neuropil subtraction with a 2-pixel ring around the 
detected component using a factor of 0.45 for neuropil subtraction. Afterwards, we 
computed the ΔF/F signal, using the 2nd percentile across the entire recording to 
determine F0. This procedure resulted in ground truth recordings from a total of 
250 simulated neurons.

Adaptation of model-based spike inference algorithms. The MLSpike algorithm12 
was downloaded from https://github.com/MLspike/spikes and used in MATLAB 
2017a. Parameter settings were manually explored for several datasets using the 
graphical demo user interface. Then, some parameters (noise level sigma and 
inverse frame rate dt) were fixed to the values constrained by the ground truth. The 
drift parameter was set to 0.1. For synthetic dyes (DSs #01–05 and DS #22 and DS 
#23), a saturating non-linearity (saturation = 0.01) was used, whereas, for all other 
datasets, a GCaMP-like non-linearity (pnonlin = (1.0 0.0)) was defined and kept 
the same across datasets, because predictions have been described to depend only 
slightly on the precise values of the non-linearity12. Based on manual exploration, 
the two parameters tau (decay time constant) and amplitude (amplitude of a single 
action potential) were explored in a grid search for all ground truth datasets and 
all noise levels separately. The grid search ranged from 0.1 s to 5 s for tau and from 
0.01 to 0.35 for amplitude.

The Peeling algorithm11 was downloaded from https://github.com/
HelmchenLab/CalciumSim and used in MATLAB 2017a. A single-exponential 
linear model with default values was used. A grid search was performed over 
two parameters for all ground truth datasets: time constant of the exponential 
decay (tau1) and the amplitude of a single spike (amp1). Grid search ranged from 
0.25 s to 5 s for tau1 and from 2.5 to 35 for amp1. Discrete spike predictions were 
convolved with a Gaussian kernel such that the resulting trace optimized the loss 
function (mean squared error between predictions and ground truth).

The Python implementation of the L1-regularized OASIS algorithm in 
CaImAn15 was downloaded from https://github.com/j-friedrich/OASIS and used 
in Python 3.7. The constrained version of OASIS was used to reduce the number 
of free parameters, with only one single free parameter, g, that relates to the 
exponential time fluorescence decay constant τ with the frame rate f: g = e−1/τf. Grid 
search was performed for g in the range between 0.02 and 0.98, with a granularity 
of 0.02.

The Python implementation of the FastL0SpikeInference algorithm42 
(Jewell&Witten) was downloaded from https://github.com/jewellsean/
FastLZeroSpikeInference and used in Python 3.7. A grid search was performed 
over two parameters for all ground truth datasets. Optimization was performed 
between 0.10 and 0.95 for the decay constant parameter gamma and between 
0.0001 and 0.75 for the L0 parameter penalty. Discrete spike predictions were 
convolved with a Gaussian kernel such that the resulting trace optimized the loss 
function (mean squared error between predictions and ground truth).

The Python implementation of the OASIS algorithm in Suite2p41 was 
downloaded from https://github.com/MouseLand/suite2p and used in Python 3.7. 

Of three tunable parameters (tau, sig_baseline and win_baseline), only the first two 
significantly affected the performance of the algorithm in our hands. win_baseline 
was set to 150 for all analyses. A grid search was performed over the two remaining 
parameters for all ground truth datasets. Optimization was performed between 0.5 
and 3 for the decay time constant parameter tau and between 2.5 and 20 for the 
parameter sig_baseline.

The optimal parameters resulting from the grid searches, which optimized the 
mean squared error between ground truth and inferred spike rates, are listed in 
Supplementary Table 1 and provided via GitHub (https://git.io/JtZe0). In addition 
to these parameters, we further used Gaussian smoothing kernels of variable 
standard deviation to find the amount of smoothing for each algorithm and dataset 
that optimized the mean squared error. Finally, to compensate for the propensity of 
several model-based algorithms to infer spike rates with a temporal lag compared 
to ground truth spike rates, we tested time shifts between −1 s and +1 s and used 
the value that optimized the mean squared error for a given dataset to evaluate the 
algorithm in our analyses.

Computational cost of spike inference. The six investigated algorithms exhibit 
different behaviors when scaling up the length of the calcium traces. For 
example, MLSpike and Peeling suffer from supra-linear cost when the duration 
of an analyzed calcium trace is increased, whereas CASCADE shows the 
opposite behavior due to its capability to parallelize spike inference. Therefore, 
all 26 full ground truth datasets, resampled at a noise level of 2 and a frame rate 
of 7.5 Hz, were used as a benchmark, consisting of recordings ranging from 10 s 
of seconds up to several minutes. Processing time was averaged across all data 
points from all datasets. The time required to load the data from hard disk was 
not included. For CASCADE, the time for pre-processing the raw calcium data 
to generate a 64-point-wide segment for each time point was included in the 
benchmarking.

Unsupervised sequence extraction using seqNMF. The MATLAB-based toolbox 
seqNMF was used to extract temporal patterns for Fig. 5 in an unsupervised 
fashion46. Based on initial parameter exploration, we used the following settings: 
K = 7, L = 20 and λ = 0.002. K indicates the number of extracted patterns, L 
indicates the number of time points for each pattern and λ serves as a regularizer to 
decorrelate the detected patterns46. The results of this unsupervised non-negative 
matrix factorization approach are K = 7 temporal patterns that are each of them 
associated with a temporal loading that indicates when the temporal pattern 
became active. The temporal patterns and the temporal loadings provide 
low-complexity factors that break down the more complex population dynamics 
(Fig. 5).

Allen Brain Observatory data. The complete calcium imaging data of the 
Allen Brain Observatory Visual Coding dataset were downloaded from http://
observatory.brain-map.org/visualcoding via the AllenSDK with a Python interface. 
Layers were assigned based on imaging depth as described47. Imaging depth, 
transgenic lines, cortical areas and fluorescence traces were extracted from 
NWB files. For analysis, neuropil-corrected calcium traces from the Allen Brain 
Observatory dataset were used. Because all recordings were performed at an 
imaging rate of approximately 30 Hz, a single set of CASCADE models (‘global 
EXC model‘ at 30 Hz; Fig. 3a) was used to predict spiking activity.

Statistical tests and box plots. Statistical analysis was performed in MATLAB 
2017a and R. Only non-parametric tests were used. The Mann–Whitney rank-sum 
test was used for non-paired samples (for example, comparison across datasets), 
and the Wilcoxon signed-rank test was used for paired samples (for example, 
comparison of predictions for the same set of neurons using two different 
algorithms). Two-sided tests were applied unless noted otherwise. Effect sizes 
Δ ± confidence interval (CI) (pseudo-median Δ and 95% CIs unless otherwise 
indicated) were computed in R. Box plots used standard settings in MATLAB, 
with the central line at the median of the distribution, the box at the 25th and 75th 
percentiles and the whiskers at extreme values excluding outliers (outliers defined 
as data points that are more than 1.5·D away from the 25th or 75th percentile value, 
with D being the distance between the 25th and 75th percentiles).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Ground truth data, including extracted spike times and calcium traces, are 
deposited in the GitHub repository together with demo scripts (https://github.
com/HelmchenLabSoftware/Cascade). We provide a cloud-based Colaboratory 
Notebook that allows for interactive browsing through all datasets (https://colab.
research.google.com/github/HelmchenLabSoftware/Cascade/blob/master/
Demo%20scripts/Explore_ground_truth_datasets.ipynb). Raw data were recorded 
in different formats, and all newly recorded raw datasets are also available upon 
reasonable request in their original formats. Publicly available datasets are 
described in detail in the Methods (‘Extraction of ground truth from publicly 
available datasets’).
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Additional information on experimental design and reagents is available in the 
Research Life Sciences Reporting Summary linked to this paper.

Code availability
A cloud-based version of CASCADE is available as a Colaboratory Notebook 
(https://colab.research.google.com/github/HelmchenLabSoftware/Cascade/blob/
master/Demo%20scripts/Calibrated_spike_inference_with_Cascade.ipynb). 
The code is also available as a GitHub repository together with demo scripts, 
installation instructions and FAQs (https://github.com/HelmchenLabSoftware/
Cascade). Pre-trained models for CASCADE are archived in an online server 
(https://www.switch.ch/drive/) and retrieved automatically by the CASCADE code.
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Extended Data Fig. 1 | Linear kernels extracted from all ground truth datasets. The kernels are optimized such that when the ground truth spike times 
are linearly convolved with the kernel, the experimentally recorded ΔF/F trace is ideally approximated. In practice, this is achieved using regularized linear 
deconvolution of calcium traces based on spike times (Methods). Kernels vary both in amplitude and shape across datasets and within datasets. For 
single neurons, the kernel area (right panels) is only shown if the kernel could be reliably determined, as tested with the variability of the kernel across the 
recording (Methods). The red arrow in panel (r) indicates an outlier case that is discussed in extended Data Fig. 4a. m: Mouse, zf: Zebrafish.
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Extended Data Fig. 2 | Illustration of different baseline noise levels. ΔF/F ground truth traces were resampled with added noise to reach the target noise 
level ν. a-d, Noise level illustration from ν = 15 (very high noise level) to ν = 1 (very low noise level). Standardized noise ν is given in units of %·Hz−1/2.
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Extended Data Fig. 3 | Matching standardized noise level ν of training and test data. Same as Fig. 2e–g, but with each column (testing level) normalized 
in order to highlight that the optimal training level for each testing noise level lies close to the diagonal. The correlation (a) was normalized by the 
maximum of each column, while error and bias metrics have been normalized by the minimum of each column. ν in units of standardized noise, %·Hz−1/2.
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Extended Data Fig. 4 | Generalization across neurons within a dataset. The deep network was trained on all neurons of a specific dataset except one, and 
then tested with the remaining neuron. This analysis shows how the network is able to generalize to new neurons recorded under the same conditions, 
as a function of the standardized noise level ν in %·Hz−1/2. a-d, Performance of the predictions for 4 selected ground truth datasets in terms of correlation, 
error and bias as a function of the standardized noise level. error values were cropped at a value of 5 for display purposes. Single neurons in grey, median 
across neurons in blue. Grey lines highlighted by arrows indicate outlier neurons with particularly low spike rates (black and green arrows) and particularly 
distinct calcium response kernel (red arrow, see main text for discussion). e, Correlation, error and biases as a distribution across neurons within each 
dataset (number of neurons for each dataset as indicated in Table 1). For box plots, the median is indicated by the central line, 25th and 75th percentiles by 
the box, and maximum/minimum values excluding outliers (points) by the whiskers. All datasets were re-sampled at a frame rate of 7.5 Hz.
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Extended Data Fig. 5 | typical artifacts in ground truth recordings. Calcium trace (ΔF/F), true action potentials (APs), inferred spiking activity (SR) and 
true ground truth spiking activity (GT). a, The baseline of this recording is unstable, exhibiting irregular bumps (arrowheads). The supervised deep network 
can learn to ignore these movement artifacts if their dynamics is dissimilar from the sharp onset of calcium transients. Predictions of the deep network are 
shown in black, ground truth in grey. Green arrowheads indicate movement artifacts that are not associated with high spiking acitivity (correct rejections 
of artifacts), while black arrowheads indicate movement artifacts that are not recognized as artifacts by the network (false positives). The zoom-in on 
the right shows an example where a movement artifact is associated with a negligeable spike rate (correct rejection). b, Fluorescence transients without 
corresponding action potentials are clearly visible (red arrowheads). These are induced by contamination through bright neuropil. The deep network is 
unable to distinguish this artifact from true calcium transients. c, Negative transients (arrowheads) are generated by standard neuropil decontamination 
(subtraction of the neuropil surround). The deep network can learn to partially ignore these events (correct rejections). d, Trace showing periodic 
movement artifacts that do not correspond to action potentials. e, A power spectral density of the recording in (d) exhibits a peak at ca. 1.5 Hz, suggesting 
breathing of the anaesthetized animal underlying the movement artifact.

NAtuRE NEuRoSCIENCE | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ResouRce NATurE NEuroSCIENCE

Extended Data Fig. 6 | Improvement of performance with ground truth dataset size. The global eXC model (see Fig. 3) was trained as before, but using 
only a subset of the ground truth data points (x-axis). The performance (correlation) across each dataset was normalized to the performance with 5 
million data points (horizontal dashed line). The performance approaches an asymptote at approximately 100,000 data points. A typical single ground 
truth dataset contains ca. 400,000 data points (median across all datasets; vertical dashed line). This result also indicates that a diverse but smaller 
training dataset sampled from all ground truth datasets results in better generalization than a larger training dataset from a single ground truth dataset.
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Extended Data Fig. 7 | Comparison with model-based algorithms, extension of Fig. 4a. example predictions from the deep-learning based method 
(CASCADe) and five model-based algorithms (MLSpike, CaImAn, Peeling, Suite2p, Jewell&Witten) of a ΔF/F recording. Inferred spike rates are in black, 
ground truth spike rates in orange. r indicates correlation of predictions with ground truth. events that are not detected across all algorithms (false 
negatives) are labeled with red arrowheads. Compared to the example in Fig. 4a, the calcium recording here is rather noisy due to the insensitivity of 
GCaMP to single action potentials in this neuron.
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Extended Data Fig. 8 | Comparison of CASCADE with model-based algorithms, extension of Fig. 4b. Comparison of the six algorithms when optimized 
for a single dataset, showing relative error and relative bias for all neurons, grouped by ground truth dataset.
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Extended Data Fig. 9 | Performance dependence on temporal precision of predictions. All algorithms were optimized via the mean squared error to infer 
spike rates at a specific temporal precision defined by the smoothing of the ground truth (default: Gaussian smoothing with kernel of σ = 200 ms). For 
all model-based algorithms, the inferred spike traces were shifted in time to optimize the mean squared error. a, Predictions from an example ΔF/F trace 
(top; dataset #09). Ground truth spike rates are shown in orange, inferred spike rates as black overlay. Correlation values are indicated at the right. The 
scale bars for ΔF/F and time are the same as in Fig. 4a. b, Highlighted excerpt from (a). Due to the high temporal precisions of the inferred spike rates, 
small time shifts lead to low performance (clearly visible for the Peeling algorithm in this example). The CaImAn and Suite2p algorithms deconvolve 
less aggressively, therefore making less dramatic errors. CASCADe and MLSpike perform best for this example neuron, with CASCADe detecting more 
events than MLSpike. c, Overall performance (correlation) change with temporal precision of predictions (smoothing kernels shown below) on a subset 
of datasets (datasets #4, #6, #9, #11-14 and #18). As expected, correlation with ground truth decreased with higher temporal resolution of the desired 
temporal resolution. This decrease was especially prominent for algorithms that, by design, aim at the inference of precise (discrete) spike rates (Peeling, 
Jewell&Witten). The decrease was less pronounced for CASCADe compared to for example MLSpike. Shaded corridors indicate SeM across n = 8 
datasets. All recordings resampled at a noise level of 2 with a frame rate of 7.5 Hz.
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Extended Data Fig. 10 | Predictions of spiking probabilities and discrete spikes from the Allen Brain Institute Visual Coding dataset. Predictions were 
produced with the global eXC model trained at 30 Hz. From dataset ID ‘552195520’, plotting a total of 40 neurons out of 74, approximately 1 minute out of 
63.2 minutes of recording for this dataset. Discrete spikes are the most likely fit, generated with an algorithm using Metropolis-Monte Carlo sampling as 
starting point (see Methods).
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Data collection For the collection of datasets 4-8, the Matlab-based open software Ephus (version described in Suter et al., 2010) was used for 

electrophysiology and Scanimage 3.8 (Pologruto et al., 2003) for calcium imaging. For collection of datasets 18-19, Clampex 10.2 software was 

used for electrophysiology and Helioscan (Langer et al., 2013) for calcium imaging. For dataset 1, AxoGraph software (version X) was used for 

electrophysiology and Scanimage (Pologruto et al., 2003) for calcium imaging. For the multiplane population imaging dataset in adult 

zebrafish (Figure 5), a customized version of Scanimage (Pologruto et al., 2003; Rupprecht et al., 2016; https://github.com/PTRRupprecht/

Instrument-Control/tree/master/ScanImage%20B) was used. For dataset 24-27, WinWCP (John Dempster, University of Strathclyde) was used 

for electrophysiology and a custom software written in Labview for calcium imaging (Khan et al., 2018). For datasets 2, 22 and 23, Clampex 

(Molecular Devices) was used for electrophysiology and Scanimage (Pologruto et al., 2003) for calcium imaging.

Data analysis The main data analyses including the implementation of the spike inference algorithm were performed in Python 3. The code for the spike 

inference algorithm together with extensive documentation is deposited on a Github repository (https://github.com/HelmchenLabSoftware/

Cascade). Additional analyses and visualizations were performed in Matlab. Statistical tests were performed either in Matlab or in R.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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The processed raw data of the ground truth datasets described in this study are available from Github (https://github.com/HelmchenLabSoftware/Cascade). 

Pretrained models of CASCADE are automatically retrieved by the code provided in the Github repository and are stored in the cloud (www.switch.ch/drive, via 

University of Zurich). The raw unprocessed data that support the findings of this study are available from the corresponding author upon request.
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Sample size Sample sizes were not predetermined for this study. For each dataset, ground truth recordings from 10-20 neurons of a minimum duration 

would be desirable to provide a clear measurement of variability across a dataset. However, fewer neurons were recorded from some 

datasets due to technical difficulties, and the resulting datasets were also useful for our analyses. In addition, this study explicitly analyzed the 

effect of limited sample sizes for each of the analyzed datasets (see Extended Data Figure 6). 

Data exclusions Exclusion of low-quality experimental ground truth data was an essential part of this study and is described in detail in the Methods section 

"Quality control". Simultaneous calcium imaging and juxtacellular recordings are technically challenging experiments that can often result in 

suboptimal recordings. Suboptimal recordings with, e.g., strong movement artifacts during imaging or contamination of the juxtacellular 

recordings by spikes from adjacent neurons would result in erroneous ground truth and therefore requires quality control including the 

exclusion of such low-quality recordings.

Replication All results and analyses based on the spike inference algorithm (CASCADE) were replicated on the same computer and on other computers on 

various operations systems (Linux, Windows, Mac). 

Ground truth experiments were not replicated beyond the recordings shown in Table 1. Multiplane population imaging experiments in adult 

zebrafish (Fig. 5) were replicated with similar results in >20 fish.

Randomization Animals were not allocated into different groups in this study.

Blinding Animals were not allocated into different groups in this study.
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Laboratory animals For experiments with zebrafish, wildtype or genetically modified (neuroD:GCaMP6f, Rupprecht et al., 2016) adult zebrafish (5-10 

months old) of both sexes were used. For experiments for dataset 1, C57BL6/J male mice (postnatal days 28–61) were used. For 

experiments for datasets 17 and 18, 8-12 week-old C57BL/6J male mice and genetically modified (Grik4-cre-G32-4Stl) male mice 

were used. Male crosses between PV-Cre and Rosa-CAG-LSL-tdTomato were used for dataset 24 and 27, VIP-Cre male mice for 

dataset 25 and SOM-Cre female mice for dataset 26 (all mice postnatal days 36-56, except for dataset 27, where mice were >8 weeks 

old). Male GIN mice (FVBTg(GadGFP)45704Swn/J) were used for dataset 22, male crosses between a PV-Cre mouse [(B6;129P2-

Pvalbtm1(cre)Arbr/J) and a loxP-flanked tdTomato reporter mouse (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) were used for 

dataset 23, and male crosses between a  a CaMKIIα-Cre mouse (B6.Cg-Tg(Camk2a-cre)T29-1Stl/J) and a loxP-flanked tdTomato 

reporter mouse were used for dataset 2.

Wild animals No wild animals were used in this study.

Field-collected samples No samples were collected from the field for this study.

Ethics oversight All experimental procedures for experiments with mice (datasets 18, 19) were conducted in accordance with the ethical principles 

and guidelines for animal experiments of the Veterinary Office of Switzerland and were approved by the Cantonal Veterinary Office in 

Zurich. The care of animals and experimental procedures for dataset 1 were carried out in accordance with national and institutional 

guidelines, and all experimental protocols were approved by the Animal Experimental Committee of the University of Tokyo. All 

zebrafish experiments (datasets 4-8) and the experiments for datasets 24-27 were approved by the Veterinary Department of the 

Canton Basel-Stadt (Switzerland). All experimental procedures for datasets 2, 22 and 23 were performed in accordance with NIH 

guidelines and approved by the Animal Care and Use Committee at University of California, Berkeley. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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