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Ketamine can relieve symptoms of
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Pilot studies have hinted that serotonergic psychedelics such as psilocybin may
relieve depression, and could possibly do so by promoting neural plasticity.
Intriguingly, another psychotomimetic compound, ketamine, is a fast-acting
antidepressant and induces synapse formation. The similarities in behavioral
and neural effects have been puzzling because the compounds target distinct
molecular receptors in the brain. In this opinion article, we develop a conceptual
framework that suggests the actions of ketamine and serotonergic psychedelics
may converge at the dendrites, to both enhance and suppress membrane
excitability. We speculate that mismatches in the opposing actions on dendritic
excitability may relate to these compounds’ cell-type and region selectivity, their
moderate range of effects and toxicity, and their plasticity-promoting capacities.
Serotonergic psychedelics may both en-
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targeting coexpressed receptors.

Spatial mismatch in the opposing drug
actions on dendritic excitability is pre-
dicted to steer plasticity actions towards
certain synapses and cell types.
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work as a novel lens to view the actions
of ketamine and serotonergic psyche-
delics on cortical circuits.
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Towards a Shared Basis for Rapid-Acting Antidepressants
Psychedelics are compounds that produce an atypical state of consciousness characterized by
altered perception, cognition, and mood [1]. Drugs with these properties include serotonergic
psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), and dissociatives, such
as ketamine. Research interest in these compounds has grown due to their therapeutic potential.
At subanesthetic dose, ketamine relieves depression with a rapid onset (within 4 h) and sustained
positive effects (for at least a week) [2,3]. The antidepressant effect of ketamine is supported by
two decades of studies, culminating in successful clinical trials and the approval of esketamine
nasal spray [3–5]. For serotonergic psychedelics, their potential as a treatment for mood
disorders has long been recognized but historically less studied [6,7]. Clinical trials examining
psilocybin, for example, are still underway, although a few studies with small sample sizes have
suggested that the compound relieves symptoms of depression and anxiety with rapid onset
and perhaps longer duration (weeks if not months) [8,9].

Many psychedelics are broken down in the body rapidly (plasma half-life after intravenous injec-
tion in humans is 79min for ketamine [10], and 74min for psilocybin [11]), yet behavioral improve-
ments are reported to last for weeks. A current theory for how the short half-life can translate into
enduring benefits is that the drugs engage neurotrophic factors to promote neural plasticity
[12,13]. Supporting this idea, in rodents, a single dose of ketamine elevates the expression of
synaptic proteins [14] and increases the formation rate of new dendritic spines in the medial
frontal cortex [15,16]. Likewise, serotonergic psychedelics and related agonists enhance the
expression of neurotrophic factors and genes associated with synaptic plasticity [17,18], as
well as induce remodeling of dendritic arbors [19].

We are not the first to note the comparable effects of serotonergic psychedelics and ketamine in
terms of neural and behavioral consequences [20,21]. However, ketamine is an N-methyl-D-
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aspartate glutamate receptor (NMDAR) antagonist, whereas serotonergic psychedelics act
primarily on serotonergic receptors. The mechanisms for how the disparate molecular targets
converge to drive similar plasticity and behavioral effects remain unknown. In this opinion
article, we propose that these drugs share a common ability to both enhance and suppress
the excitability of dendrites. What is the consequence of a drug that can drive opposing actions
on dendritic excitability? We hypothesize that spatial mismatches in the opposing actions may
account for the plasticity-promoting capacities of the drugs as well as their cell-type and brain-
region specificity. In other words, competition at the dendritesmight steer which synapses, neurons,
and brain regions undergo plasticity and are modified, thereby positioning dendrites as an
important substrate for understanding the actions of ketamine and serotonergic psychedelics
(Figure 1A, Key Figure).
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Figure 1. (A) A flowchart outlining the intuition behind a dendrite-focused framework of antidepressant drug actions: ketamine, serotonergic psychedelics, and potentially
other drugs with rapid-acting antidepressant effects could acutely modulate dendritic excitability through idiosyncratic ligand–receptor interactions, inducing local
gradients of Ca2+ influx that drive neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF)] and biochemical cascades [e.g., mammalian target of rapamycin
(mTOR)] to bias certain synapses for the favorable effects of long-term neural plasticity. Based on this view, schematic illustrations show how (B) ketamine is hypothesized
to leverage the microcircuit architecture to drive competing actions on pyramidal cell dendrites: inhibition from N-methyl-D-aspartate glutamate receptor (NMDAR) antag-
onism directly on pyramidal cells (blue shading) and excitation from interneuron-mediated disinhibition (red shading). (C) By contrast, serotonergic psychedelics may take
advantage of compartmentalized distributions of serotonin (5-HT) receptor subtypes to drive competing actions on dendritic excitability: agonism of 5-HT1A receptors, likely
along the axonal initial segment or in somatodendritic distribution, decreases excitability (blue shading), while agonism of 5-HT2A receptors, primarily along the proximal
apical dendritic trunk, leads to increased excitability (red shading). The hypothesized spatially mismatched actions illustrated in (B) and (C) are supported by some evidence
on interneuron connectivity [62,63] and receptor localization [41–43,46,47], but the scheme remains to be validated.
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Ketamine – Competition for Dendritic Excitability through Microcircuit Interactions
Ketamine is a noncompetitive NMDAR antagonist with complex pharmacology [22]. One notable
characteristic is that both the induction and reversal of NMDAR blockade are use dependent.
That is, ketamine binds only when the receptor is in its agonist-bound form, but the compound
also becomes trapped in a closed channel and cannot unbind until the receptor is reopened by
an agonist [23]. Accordingly, although ketamine exhibits similar micromolar affinities for NMDARs
of various subunit compositions [24], it may favor receptor subtypes with slower deactivation
times [25]. Because blockade decreases the open time and frequency of NMDARs, the antici-
pated effect of ketamine on dendrites of pyramidal neurons is to reduce membrane excitability
(Figure 1B, blue shading).

However, in cortical microcircuits, ketamine antagonizes not only NMDARs on pyramidal
neurons, but also NMDARs on GABAergic inhibitory neurons. From the perspective of pyrami-
dal neurons, the consequence is a loss of inhibition, which is the basis of the disinhibition
framework of NMDAR antagonism [26]. The disinhibition framework is in agreement with the
elevated glutamate efflux [27] and heighted firing rates of pyramidal neurons [28] observed in
medial frontal cortex in vivo following the systemic administration of NMDAR antagonists.
The heightened spike rates, in particular, suggest decreased inhibition on the cell body. In-
deed, NMDAR antagonists have been shown to attenuate the activity of soma-targeting,
parvalbumin-expressing (PV) GABAergic neurons [29–31]. A recent study showed that knockdown
of NMDARs in PV interneurons can block ketamine’s antidepressant-like effects inmice [32], although
the behavioral effects of interneuron manipulation can be complicated [33]. Nonetheless, this
finding and other lines of evidence [32,34] indicate PV interneurons may be involved in ketamine’s
antidepressant action.

Extending the disinhibition framework, a recent study demonstrated that ketamine has a sub-
stantial impact on inhibition mediated by the dendrite-targeting, somatostatin-expressing (SST)
GABAergic interneurons [35]. Using subcellular-resolution two-photon imaging to monitor
cellular and synaptic Ca2+ signals, it was shown that the activity of frontal cortical SST inter-
neurons was markedly reduced in awake mice within an hour of ketamine administration. The
diminished dendritic inhibition was accompanied by elevated Ca2+ influx in apical dendritic
spines, indicative of increased synaptic excitability. Blocking ketamine’s actions on prefrontal
SST interneurons prevented drug-induced behavioral outcomes. Therefore, an indirect effect of
ketamine on dendrites of pyramidal neurons, through disinhibition, is an increase of membrane
excitability (Figure 1B, red shading). Of note, disinhibition by PV interneurons may also contribute
to elevating dendritic excitability, as the PV interneurons may influence the proximal portion of the
dendritic tree. Taken together, these findings suggest that the direct and indirect effects of
ketamine produce opposing actions on the dendritic excitability of pyramidal neurons.

Serotonergic Psychedelics – Competition for Dendritic Excitability through
Coexpressing Receptors
Serotonergic psychedelics, also referred to as serotonergic hallucinogens (e.g., psilocybin, LSD,
and mescaline), have high affinity for serotonin (5-HT) receptors. Take for example psilocybin:
after entering the body, it is rapidly converted in the liver into multiple metabolites including
psilocin [36]. Psilocin, a structural analog of 5-HT, has affinity for many 5-HT receptor subtypes
and select adrenergic, dopaminergic, and histaminergic receptors (Table 1). The listed 5-HT re-
ceptors are G-protein-coupled receptors that engage a wide range of intracellular signal trans-
duction pathways that can influence neuronal excitability. Here, we focus mainly on 5-HT2A and
5-HT1A receptors because these subtypes have been most heavily characterized in the cortex
for their potential roles in mediating the actions of serotonergic psychedelics.
262 Trends in Neurosciences, April 2021, Vol. 44, No. 4



Table 1. Binding Affinities of Ketamine and Psilocin for Various Receptor Typesa

Ki values, binding affinity (nM)

Ketamine Psilocin Radioligand

5-HT1A Low affinity 567 [3H]-8-OH-DPAT

5-HT1B Low affinity 220 [3H]-GR-125743

5-HT1D Low affinity 36 [3H]-GR-125743

5-HT1E Low affinity 52 [3H]-5HT

5-HT2A Low affinity 107 [3H]-Ketanserin

5-HT2B Low affinity 5 [3H]-LSD

5-HT2C Low affinity 97b [3H]-Mesulergine

5-HT3 Low affinity Low affinity [3H]-LY 278584

5-HT5 Low affinity 84 [3H]-LSD

5-HT6 Low affinity 57 [3H]-LSD

5-HT7 Low affinity 4 [3H]-LSD

5-HT transporter Not available (N.A.) 3801 [3H]-Citalopram

NMDA 661b N.A. [3H]-MK-801

Adrenergic α2A Low affinity 1379
Ketamine: [3H]-rauwolscine;
Psilocin: [125I]-clonidine

Adrenergic α2B Low affinity 1894
Ketamine: [3H]-rauwolscine;
Psilocin: [125I]-clonidine

Dopamine D3 Low affinity 2645a
Ketamine: [3H]-N-methylspiperone;
Psilocin: [3H]-NMSP

Histamine H1 Low affinity 305 [3H]-Pyrilamine

aSource: NIMH Psychoactive Drug Screen Program (PDSP) [129]. Ki values are PDSP certified values (human data except
where ‘b’ indicates value from rats when human data were unavailable). Note that values for ketamine are for the racemic
mixture, which consists of (S)- and (R)-ketamine that are converted into multiple metabolites. The enantiomers and
metabolites have varying affinities to NMDAR and other receptors [22]. Low affinity means Ki >10 000 nM.
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As expected from their respective coupling to Gq and Gi/o protein pathways, activation of 5-HT2A
and 5-HT1A receptors has contrasting effects on neuronal excitability. For 5-HT2A receptors, elec-
trophysiological recordings from layer 5 pyramidal neurons in the rat frontal cortex in vitro indicate
that activation leads acutely to membrane depolarization [37], and facilitates spiking activity by re-
ducing afterhyperpolarization and decreasing spike frequency accommodation [38]. By
contrast, activation of 5-HT1A receptors is associated with membrane hyperpolarization [37,38].
Similar opponent actions have been reported for human neocortical neurons [39].

Where are these receptors located in the frontal cortex? In one early study, it was estimated
that about 60% of frontal cortical neurons in the rat have detectable levels of Htr1a or Htr2a
transcripts and, among these cells, about 80% showed coexpression in the same cell [40].
The coexpression is in line with electrophysiological observations of within-neuron competition:
some pyramidal neurons have a biphasic firing response to 5-HT, where the addition of a
5-HT2A or 5-HT1A receptor-specific antagonist could diminish the excitatory or suppressive
component respectively [38].

Although 5-HT2A and 5-HT1A receptors can be present in the same pyramidal neurons, their
subcellular localization appears to differ. Immunohistochemical stains revealed a strikingly high
density of 5-HT2A receptors in the proximal apical dendritic trunk of pyramidal neurons in rat
and macaque frontal cortex [41,42]. The postsynaptic localization to dendritic shafts and
dendritic spines was confirmed by an ultrastructural characterization [43], as well as identification
Trends in Neurosciences, April 2021, Vol. 44, No. 4 263
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of molecular partners that drive the preferential sorting of 5-HT2A receptors [44]. In a study using
microiontophoresis to target different dendritic locations, it was shown that adding 5-HT locally
at the apical dendrite was sufficient to elevate the frequency and amplitude of spontaneous
excitatory postsynaptic currents; an effect that was notably absent when the same manipulation
was performed on basilar dendrites [45]. Converging evidence therefore indicates that 5-HT2A
agonism leads to increased membrane excitability, most strongly in the proximal apical dendrite
(Figure 1C, red shading).

There is less consensus on the subcellular localization of 5-HT1A receptors. An immunohistochem-
ical study indicated a somatodendritic distribution for 5-HT1A receptors on pyramidal neurons in
the rat hippocampus [46]. However, subsequent work, which relied on an antibody recognizing
a different epitope, reported a concentration of 5-HT1A receptors on the axon initial segment of cor-
tical pyramidal cells [47]. Despite uncertainty in the subcellular localization, what is clear is that the
effect of 5-HT1A agonism is a decrease in membrane excitability (Figure 1C, blue shading).

Putting it all together, multiple lines of evidence suggest ketamine and serotonergic psyche-
delics exert competing actions on dendritic excitability. Although the principal mechanisms –

microcircuit interactions for ketamine and receptor coexpression for serotonergic psychedelics
–may differ, we reason that the ability of the compounds to drive opposing effects on dendritic
function in the same cell is similar. In the following sections, we will explore five ways in which
the proposed opposing actions could account for some of the neural and behavioral features
of ketamine and serotonergic psychedelics.

Opposing Actions as a Mechanism to Promote Long-Term Neural Plasticity
An increase of membrane excitability boosts Ca2+ influx through calcium-permeable channels
including NMDARs and voltage-gated Ca2+ channels. Once in the dendritic compartment, Ca2+

acts as a second messenger to initiate signaling cascades and engage neurotrophic factors re-
sponsible for spine growth [48]. The essential role of Ca2+ in synaptic plasticity has been
demonstrated thoroughly by studies involving bidirectional manipulation of postsynaptic Ca2+

levels during protocols of synaptic potentiation [49,50]. The relationship is supported by how the
peak Ca2+ accumulation in dendritic spines tracks the magnitude of long-term changes in synaptic
efficacy [51]. Overall, our perspective (Figure 1A) is in line with the prevailing neurotrophic model for
stress-related mood disorders and antidepressant actions [12,52], because postsynaptic Ca2+

influx is expected to upregulate neurotrophins [53], such as brain-derived neurotrophic factor
(BDNF), which acts on tropomyosin receptor kinase B (TrkB) receptors to stimulate mammalian
target of rapamycin (mTOR) signaling crucial to synapse formation. The plasticity actions of keta-
mine [54] and serotonergic psychedelics [19] have been linked to BDNF expression andmTOR ac-
tivation, suggesting that these cascades underlie the shared capacity to drive sustained
antidepressant effects. What differs is that the proposed framework emphasizes the acute drug
actions on dendritic excitability and Ca2+ influx as leading factors and equally important contribu-
tors to the plasticity effects.

Through their actions on dendritic excitability, ketamine and serotonergic psychedelics are
expected to initiate plasticity. Plasticity is predicted, by our framework, to occur only for select den-
dritic branches and spines because the impact of the drugs on the dendritic tree is likely to be het-
erogeneous, due to spatial mismatches in the opposing actions. In particular, ‘hot spots’ of
elevated excitability may be potentiated to enhance synaptic coupling, congruent with the
excitatory synapse hypothesis of depression [55,56]. Although the idea seems intuitive, details
remain open for experimental confirmation, because precise measurements of the pharmacological
effect across the entire dendritic tree are currently lacking (see Outstanding Questions). For
264 Trends in Neurosciences, April 2021, Vol. 44, No. 4
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example, there could be differences in the exact dendritic locations targeted by ketamine and
serotonergic psychedelics, which would allow for differences in time course and phenotype of the
drugs’ antidepressant actions.

Although a full picture of each drug’s actions on dendrites is lacking, one can still appreciate
the powerful impact of how local control of dendritic excitability can sculpt Ca2+ signaling and
plasticity, by surveying experiments in which dendritic excitability is perturbed directly using electri-
cal or optical methods. At the dendritic trunk, raising excitability by current injection increases the
occurrence of dendritic Ca2+ spikes that lead to widespread Ca2+ influx in apical dendritic tufts
in vivo [57]. By contrast, reducing excitability by evoking a unitary inhibitory input is sufficient to
short circuit back-propagating regenerative events [58]. These empirical findings are in agreement
with computational models showing that inhibition at the dendrites modifies the threshold and
amplitude of dendritic electrogenesis [59]. At the dendritic tuft, dendrite-targeting interneurons
have a propensity to inhibit cortical apical dendrites in a branch-specific fashion [60,61]. The inhib-
itory inputs are primarily located on shafts [62,63], and the impact of SST interneuron-mediated in-
hibition on Ca2+ signaling varies greatly across individual dendritic spines [64,65]. The specificity in
dendritic inhibitory innervation suggests that ketamine-induced disinhibition may apply to only a
subset of dendritic spines. In one study, the impact of individual GABAergic synapses on dendritic
Ca2+ signals was measured and the attenuation had a narrow spatial window of ~25 μm [66].
Collectively, diverse forms of local and widespread dendritic Ca2+ signals are associated with a
multitude of plasticity mechanisms [67,68], which we suspect are targeted by spatially confined
changes in excitability arising from the actions of ketamine and serotonergic psychedelics.

We focused on dendritic locations with increased excitability, but is there also a role for other
locations in the same dendritic tree with concomitant reductions in excitability? One possibility
is that the balance of excitatory and inhibitory effects serves to stabilize the overall excitability of
the neuron, preventing aberrant spiking activity. Intriguingly, higher doses of ketamine, where it
acts as an anesthetic, dramatically reduce the propagation of electrical signals from the apical
dendritic tuft to the cell body of layer 5 pyramidal neurons, leading to an electrical decoupling of
the dendritic tree from the somatic compartment [69].

Opposing Actions as a Mechanism to Acutely Alter Synaptic Integration
A central function of the dendrite is synaptic integration, where thousands of inputs are transformed
into a (typically) all-or-none output. The integration process is regulated by a balance of excitatory
and inhibitory synapses along dendrites [70], which is tuned by homeostatic mechanisms that can
calibrate excitability in a branch-specific manner [71] or even at the level of local GABAergic inputs
[72]. Because ketamine and serotonergic psychedelics acutely perturb dendritic excitability, the
drugs are expected to impair the ability of dendrites to receive and filter inputs. In the frontal cortex,
inputs impinging on dendrites carry behaviorally relevant information including sensory- and
reinforcement-related signals [61,73,74].

The behavioral alterations during the short period when ketamine or a serotonergic psychedelic is
bioavailable are consistent with altered synaptic integration. For psychedelics, a core symptom is
a warped awareness of the surroundings, corresponding to a disruption of sensory input filtering
[1]. The dendritic origin of this phenotype is supported by experiments that have knocked out the
dendrite-localized 5-HT2A receptors in neocortex [75] and, more specifically, compromised the
dendritic targeting of 5-HT2A receptors [44]. These manipulations eliminated head-twitch
responses, a drug-induced motor stereotype in rodents that correlates closely with the potency
of hallucinogen exposure in humans [76]. Furthermore, a neural signature for diminished input
filtering would be an aberrant increase in functional connectivity with the frontal cortex. Combined
Trends in Neurosciences, April 2021, Vol. 44, No. 4 265
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electrical microstimulation to excite long-range inputs and two-photon imaging to record from
frontal cortical dendrites have demonstrated that ketamine administration in mice elicits hyper-
sensitivity to long-range cortical inputs [35].

Reinforcement-related signals arriving at the apical dendrites could serve as a substrate for
forming new associations or calculating credit assignments during reward-guided learning
[58,77]. In this instance, it is instructive to consider one of the more carefully designed studies
that have characterized effects of subanesthetic ketamine on cognitive flexibility. In this
study, the authors instructed participants to play the Wisconsin Card Sorting Task twice, one
week apart [78]. Administration of ketamine immediately prior to the first task exposure induced
perseverative deficits, whereas the same treatment before the second task exposure had
no noticeable effect on performance. These results suggest that cognitive rigidity due to
subanesthetic ketamine may be ascribed to a learning deficit, because the effect is absent
when subjects merely have to re-implement a learned rule.

Opposing Actions as a Mechanism to Influence Select Cortical Regions
Thus far, we have discussed the actions of ketamine and serotonergic psychedelics with an
emphasis on the medial frontal cortex. In part, this is because numerous preclinical studies have
implicated neural plasticity in themedial frontal cortex as essential for the antidepressant-like effects
of ketamine [14,16]. Another reason is that although the drug would be broadly present in the brain
following systemic administration, mapping studies indicated higher metabolic activity in select
regions, which included the medial frontal cortex for ketamine in humans [79,80] and rodents
[81], and for psilocybin in humans [82]. These results indicate that the drugs act on certain brain
regions more than others (see Box 1 for a brief discussion of other targeted brain regions).

For ketamine, we have proposed that the competing actions coalesce at the apical dendrites of
pyramidal cells due to interneuron-mediated disinhibition that opposes the direct effects of
NMDAR antagonism. Thus, one prediction is that ketamine should have a stronger influence
in regions with a high abundance of SST interneurons relative to the overall inhibitory tone (PV
interneurons used as a proxy in the following analyses), because of the relative preponderance
of sites available for dendritic disinhibition. This interneuron distribution is indeed the case for
medial frontal cortex, in terms of transcript expression in humans [83] as well as cell density in
mice [84,85]. To reproduce these earlier findings but for transcript expression in mice, we plotted
the relative levels of Sst and Pvalb mRNA from in situ hybridization data [86] against
neuroimaging-based estimates of cortical hierarchy [85] (Figure 2A–C). As the visualization
indicates, prefrontal and anterolateral regions have increased expression of Sst relative to
Pvalb, consistent with recent measures of cell density [84,85]. This pattern, we speculate, may
render these brain areas more susceptible to drug-induced dendritic disinhibition relative to, for
example, motor regions. Such region specificity for ketamine-induced disinhibition is consistent
with recent measurements [35], although will require further testing. We note that, in addition to
neocortex, similar dendrite-targeting interneurons and microcircuit motifs exist in the hippocampus,
another location that is activated robustly by ketamine [81,87].

Similarly, the relative abundance of 5-HT1A and 5-HT2A receptors might determine the regional
selectivity of serotonergic psychedelics. In a study using high-resolution positron emission
tomography in humans, it was found that while 5-HT1A and 5-HT2A receptors showed enrich-
ment in the frontal cortex, entorhinal cortex, temporal cortex, and insula, the ratio of expression
differs across the regions [88]. Moreover, LSD-induced functional connectivity matches the
HTR2A gene expression in human neocortex [89]. To investigate the relationship in mice, we
mined in situ hybridization data for Htr1a and Htr2a (Figure 2D). Prefrontal regions tend to have
266 Trends in Neurosciences, April 2021, Vol. 44, No. 4
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a higher Htr2a:Htr1a expression ratio than posterior cortical regions (i.e., medial and visual areas
in Figure 2B). The extent to which these differences relate (for instance in mice) to the effect of se-
rotonergic psychedelics on brain-wide activity remains to be measured. It is worth noting that re-
gions important for drug actions are often assumed to have elevated firing or metabolic
activity, but this may not be the case for serotonergic psychedelics [90], as plasticity arising
from dendritic electrogenesis could occur independent of spiking output [91,92].

Opposing Actions as a Mechanism to Target Subpopulations of Neurons
Within the frontal cortex, there are numerous subtypes of pyramidal neurons, and each subtype’s
response to ketamine and serotonergic psychedelics may depend on its sensitivity to the
hypothesized opposing actions. Take serotonergic psychedelics as an example; subpopulations
of pyramidal neurons that have high levels of 5-HT2A relative to 5-HT1A receptors may exhibit
pronounced excitation, whereas other cells with favored expression of 5-HT1A receptors display
the opposite response.

There are many anatomical and molecular differences that could contribute to differential sensitivity
across subtypes of pyramidal neurons. For example, pertaining to ketamine, supragranular
pyramidal neurons have more inhibitory inputs near the main dendritic bifurcation, but fewer
inhibitory inputs in distal tufts, relative to deep-layer pyramidal neurons [63]. Among layer 5 pyrami-
dal neurons, the thick- and slender-tufted pyramidal neurons [putatively pyramidal tract (PT) and
intratelencephalic (IT) subtypes] have different amounts of inhibitory innervations [63]. Similarly,
with regard to their sensitivity to 5-HT, most IT neurons exhibit 5-HT2A-receptor-dependent
increase in firing, whereas many PT neurons display 5-HT1A-receptor-dependent activity suppres-
sion in the mouse frontal cortex [93,94], although differences across cell types may be species
specific and developmentally regulated [94].

To seek insight into the cell types likely responsive to serotonergic psychedelics, we took advan-
tage of a public database of single-cell RNA sequencing data from >10 000 cells sampled from
the anterolateral motor cortex in mice [95]. Focusing on 5-HT receptor subtypes with high affinity
to psilocin (Table 1), this visualization reveals that although most neuronal subclasses have low
levels of Htr1a, IT neurons have enriched expression of Htr2a (Figure 3A). Consistent with prior
literature [93,94], we suggest that the highHtr2a:Htr1a expression ratio in IT neurons should render
these cells susceptible to psychedelic-induced increases in membrane excitability (Figure 3B).
Other intriguing observations include: a Htr1a bias for SST interneurons suggesting serotonergic
psychedelics may also induce dendritic disinhibition, the near absence of coexpression in layer 6
pyramidal neurons and non-SST interneuron subtypes, as well as considerable levels of several
other 5-HT receptor subtypes whose cell-type-specific functions are unknown (Figure 3C). Overall,
the gradient of receptor composition in different cells should correspond to a spectrum of
pharmacological responses (Figure 4A–C), with the implication that through a balance of receptor
expression ratios, plasticity is steered towards select subpopulations of neurons.

Opposing Actions as a Mechanism to Mitigate Toxicity
Although transient imbalance in dendritic excitability can promote plasticity, prolonged and
excessive dendritic alterations may be deleterious and underpin various neuropsychiatric
disorders [96,97]. Confronted with excitotoxicity, dendrites appear to be particularly vulnerable
to overactivation [98], perhaps because of their morphology and limited ability to invoke
intracellular pathways to counter the excitotoxic challenge [99].

For ketamine and serotonergic psychedelics, the concurrent push-and-pull actions are expected
to influence dendritic excitability with a dose–response curve that depends on the precise nature
Trends in Neurosciences, April 2021, Vol. 44, No. 4 267
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of excitatory and inhibitory responses to each dose. In an illustrated example (Figure 4D–F), the
response is tempered at high dose because both actions are engaged. At a lower dose, depending
on the potency (i.e., receptor affinity) and efficacy (i.e., maximum biological response) of the
competing actions, the excitatory actions can exceed inhibitory effects to generate maximal
increase in dendritic excitability for the compound. An inverted U-shaped dose–response curve
safeguards against high-intensity responses associated with drug toxicity [100]. This, in combina-
tion with the rapid pharmacokinetics, may be crucial for inducing neural plasticity while avoiding
dendritic damage. Consistent with this idea, while low-dose ketamine has fast-acting antidepres-
sant effects, higher doses produce general anesthesia. Likewise, although chronic exposure
may be neurotoxic [101], serotonergic psychedelics are typically tolerated at high doses. For
example, the therapeutic ratio of LSD in humans is 280 (effective dose = 50 mg; lethal dose =
14 000 mg), making the therapeutic dose remarkably distant from doses carrying any lethality
risk [1]. By contrast, the hallucinogen NBOMe, which has higher selectivity for 5-HT2A compared
with 5-HT1A receptors, presents negative side effects and has been linked to fatalities [102].

The mitigation of toxicity is a core appeal of nonselective pharmacological therapies. Specifically,
ketamine and serotonergic psychedelics may generate a summative therapeutic action, while
limiting adverse effects stemming from excessively agonizing or antagonizing a single target.
This idea has been championed as the ‘magic shotgun’ [103], in contrast to highly selective
agents which would be ‘magic bullets’.

Limitations of the Proposed Framework
It is important to consider features of ketamine and serotonergic psychedelics that may be inconsis-
tent with the dendritic framework. We have proposed that ketamine’s opposing actions on dendritic
excitability are due to NMDAR antagonism. However, other NMDAR antagonists (e.g., dizocilpine,
phencyclidine, memantine, rapastinel, and lanicemine) have not consistently produced
Box 1. Future Work Informed by the Dendritic Framework

The dendritic framework has a number of gaps and predictions that compel further study.We focused discussion of ketamine on
the frontal cortex, but regions such as lateral habenula may respond through mechanisms other than dendritic excitability, and
play important roles in the antidepressant effects [130]. Serotonergic psychedelics can inhibit spontaneous activity in subcortical
nuclei, for example, through direct actions on dorsal raphe [131] and indirect actions on locus coeruleus [132]. These
neuromodulatory effectsmay underpin reduced sensory drive in primary cortex [133], contributing to the unique subjective effects
of these compounds such as visual hallucinations, which are distinct from ketamine’s effect of distorting sensory perception.

Given the myriad target regions, one intriguing hypothesis is that ketamine and serotonergic psychedelics open a critical
window of plasticity in the frontal cortex, with concomitant inputs from other regions as necessary ingredients to
strengthen specific long-range pathways. If true, this would suggest that purposeful, pathway-specific stimulation during
the acute phase of drug administration or within the timewindow of neurotrophin induction could be beneficial, andmay be
leveraged to augment plasticity actions. It remains unclear how the direct receptor-level actions of ketamine and seroto-
nergic psychedelics contribute to the acute dissociative or hallucinogenic effects, and whether these psychotomimetic
effects are related to the antidepressant action [134,135]. High-fidelity behavioral phenotyping during and following drug
administration may help uncover the relations between the on- and off-target behavioral effects. To this end, it may be
fruitful to examine whether psychedelics affecting other receptors (e.g., salvinorin A acting on κ-opioid receptors [136])
exhibit similar competing actions on dendritic excitability and rapid antidepressant effect [137].

For serotonergic psychedelics, novel insights might be gained by characterizing the relative expression of 5-HT receptor sub-
types, rather than their absolute abundances, in relation to dendritic responses, neural pathways [138], and behavioral outcomes
[139]. For ketamine, current evidence suggests that only a subset of dendritic spines are under the influence of inhibitory inputs,
and therefore sensitive to ketamine-induced disinhibition. Future experiments that focus on these plastic connections, perhaps to
identify the source of their presynaptic inputs [63,140], will be informative. Relatedly, visualizing the acute and sustained drug ac-
tions across the entire dendritic tree will help address the nature of the predicted spatial mismatches in dendritic excitability. Cur-
rent optical methods are limited in terms of relatively small fields of view and poor temporal resolution [141]. New imaging
approaches, for instance those relying on remote focusing and Bessel beam technologies [73,142], open the possibility to mea-
sure calcium and other biochemical signals over a large fraction of the dendritic field following drug administration.
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Figure 2. Regional Differences in the Expression of Sst, Pvalb, Htr1a, and Htr2a in the Adult Mouse Neocortex. (A) For each gene, an example of the mRNA
transcripts detected from in situ hybridization in a near-midsagittal section of an adult C57BL/6J mouse, from the Allen Institute for Brain Science database [86]. (B) Cortical
regions as demarcated in the Allen Mouse Common Coordinate Framework, and further color-coded based on six groupings. (C) Regional expression of Pvalb and Sst as
well as their ratios, obtained from [86], plotted against the T1w:T2w parameter (inversely related to cortical hierarchy), obtained via [85] from the Scalable Brain Atlas [143] in
Waxholm space [144]. Lines, medians. (D) Similar to (C), but for Htr1a and Htr2a.
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antidepressant effects [104]. What sets ketamine apart? A parsimonious explanation is that
subanesthetic ketamine may induce just the right amount of delicate balance of suppressive and
disinhibitory actions on dendritic excitability, varying from other NMDAR antagonists due to differ-
ences in pharmacological properties. Indeed, ketamine differs from other NMDAR antagonists in
binding-site affinity [105], NMDAR trapping [106], potency of effect on intracellular cascades [107],
and even preference for particular receptor states and subcellular locations [108]. Still, the exact rea-
sons remain unknown.
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Figure 3. Cell-Type Differences in the Expression of Htr1a, Htr2a, and Other Serotonin Receptor Genes in the Adult Mouse Frontal Cortex.
(A) Expression of Htr1a and Htr2a transcripts in cortical cell types, based on analyzing single-cell RNA sequencing (SMART-Seq v4) data from 7252 neurons sampled
from the anterolateral motor cortex of adult C57BL/6J mice of both sexes by the Allen Institute for Brain Science [95]. Open circle, median value; n, count of the cell
subclass. (B) The Htr2a:Htr1a expression ratio, for neurons with non-zero expression values for both Htr1a and Htr2a. Open circle, median value; n, count of the cell
subclass. (C) Additional serotonin (5-HT) receptor subtypes (among those listed in Table 1) that show enriched expression (median CPM >0) in select neuronal
subclasses. Abbreviations: CPM, counts per million reads; CT, corticothalamic; IT, intratelencephalic; L2/3, layer 2/3; L5, layer 5; L6, layer 6; PT, pyramidal tract; PV,
parvalbumin; SST, somatostatin; VIP, vasoactive-intestinal protein.
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Ketamine has additional intriguing characteristics and off-target effects, but these features
generally align with the hypothesized push and pull on dendritic excitability. For example, at
a higher dose, ketamine appears to suppress HCN1-containing channels, which would
relieve shunting in dendrites and also enhance excitability [109]. Recent data indicate that
(R)-ketamine may exert more potent antidepressant effect with fewer adverse effects than
(S)-ketamine [110,111], although both enantiomers are suspected to antagonize NMDARs
albeit with slightly different affinity [22]. Moreover, the metabolite hydroxynorketamine has
been shown to mediate rapid antidepressant-like action without antagonizing NMDARs
[112,113]. Although the effects of ketamine metabolites on dendritic excitability are not yet
known, and therefore cannot be fully explained by the present framework, they appear to drive
antidepressant-like effects in mice through similar neurotrophic cascades as ketamine [22].

5-HT receptor signaling is complex, and the pharmacological features distinguishing psychedelics
from other 5-HT-related agents are not well understood [6]. On the one hand, although 5-HT can
promote neurite growth in cortical neurons, the effect is minimal compared with psychedelics [19].
On the other hand, the selective 5-HT2A agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)
may promote neurite growth [19] and anxiolytic action [114] without agonizing 5-HT1A receptors.
Moreover, selective serotonin-reuptake inhibitors (SSRIs) exert antidepressant effects on a different
270 Trends in Neurosciences, April 2021, Vol. 44, No. 4
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Figure 4. Mismatches in Excitatory and Inhibitory Actions Can Mediate Drug Selectivity: A Schematic
Illustration. A drug may exert a gradient of (A) excitatory (exc.) effects (e.g., interneuron-mediated disinhibition for ketamine,
serotonin (5-HT)2A receptor agonism for serotonergic psychedelics) and (B) inhibitory (inh.) effects [e.g., N-methyl-D-aspartate
glutamate receptor (NMDAR) antagonism, 5-HT1A receptor agonism] on dendritic excitability across cells or brain regions.
(C) The summative effect of the competing actions may steer increases in dendritic plasticity towards a subpopulation of
cells or select brain regions, while leaving others unaffected or even suppressed. (D–F) Similarly, for dose–response curves,
the summative effect of the competing actions could constrain the effects of a drug on dendritic excitability, limiting the pos-
itive effects to a restricted dose range and safeguarding against high-intensity responses associated with drug toxicity.
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time scale. Some of the complexity may arise because 5-HT2A receptors can form heteromeric com-
plexes (e.g., with metabotropic glutamate 2 receptor; [115]) to recruit additional signal trans-
duction pathways. Furthermore, the effect of 5-HT on its receptors may not fully recapitulate
the actions of serotonergic psychedelics, as agonist-directed signaling of the 5-HT2A receptor
can involve different intracellular partners and transduction pathways [75,116–118] leading to
unique effects on Ca2+ mobilization [119]. Beyond the acute drug actions, there is substantial
adaptation in the receptors following agonist exposure, including the well-documented desen-
sitization and downregulation in 5-HT2A receptors [120]. A key challenge will be to reconcile
how the various effects at the molecular, cellular, and circuit levels contribute to the antidepres-
sant actions of serotonergic psychedelics.

Dysfunctional signaling of monoamines, including glutamate [5] and 5-HT [121], is thought to play a
major role in the etiology of depression. Ideally, the actions of an antidepressant should be viewed
through the lens of the dysfunction, as the goal of pharmacological treatments is to restore function. In
particular, the excitability of dendritic branches and spines may be regulated with homeostatic set
points [122]. By nudging excitability in both directions, ketamine and serotonergic psychedelics
could act to restore the homeostasis required for proper dendritic function [13]. However, the interac-
tion of dysfunction and pharmacological actions on the dendritic substrate remains poorly under-
stood. In this opinion article, we have focused on discussing how psychedelics may converge to
prompt selective plasticity actions, but it will also be important to knowwhy the selected plasticity ac-
tions are beneficial.
Trends in Neurosciences, April 2021, Vol. 44, No. 4 271
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Outstanding Questions
What is the impact of psychedelics
on membrane excitability across the
entire dendritic tree? The proposed
framework predicts that select dendritic
locations could be targeted due to
spatial mismatches in the microcircuit or
cellular interactions, yet measurements
across the totality of an individual
neuron’s dendrites remains technically
challenging.

To the extent that exposure to ketamine
and serotoninergic psychedelics may
open a critical window of plasticity in the
frontal cortex, can this period be used
to steer and augment the long-term plas-
ticity effects towards connections that
would yield therapeutic effects?

Ketamine appears to engage at least
two forms of disinhibition via PV and
SST interneurons.What are the relative
contributions of these disinhibitory
mechanisms for the psychotomimetic
and fast-acting antidepressant effects
of ketamine?

A small but notable fraction of 5-HT1A
and 5-HT2A receptors are expressed
in GABAergic interneurons. Do sero-
tonergic psychedelics also engage
microcircuit interactions (e.g., SST
neuron-mediated disinhibition) as
ketamine does?

Several neuronal subclasses express
5-HT receptor subtypes that are
far less understood than 5-HT1A and
5-HT2A receptors, but for which
psilocin shows affinity. How do these
additional receptor subtypes con-
tribute to the actions of serotonergic
psychedelics?

SSRIs also target the serotonergic
system and promote antidepressant
effects. Do they recruit opposing
actions at dendrites? Why do SSRIs
not have comparable rapid or durable
antidepressant effects?
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To develop a comprehensive understanding of the antidepressant effects of ketamine and
serotonergic psychedelics, one will need to consider these compounds’ actions in various
brain regions and their potential off-target effects. Even within the frontal cortex, it should be
emphasized that pyramidal neurons are embedded in cortical microcircuits, therefore considering
the drugs’ actions at the individual cell level leads to an incomplete picture. The reverberation of
excitatory activity and influences from other cell types is expected to lead to higher-order, down-
stream effects that further shape dendritic excitability. Serotonergic psychedelics, for example,
while preferentially exciting IT pyramidal neurons [93] (Figure 3B), are likely to have second-
order effects on PT pyramidal neurons as well, because of the biased connectivity between the
two cell types [123]. Moreover, a minor fraction of 5-HT1A and 5-HT2A receptors reside in inter-
neurons (Figure 3A), which can modify GABAergic signaling [124,125]. There are also possibly
5-HT2A receptors in thalamocortical axons in the frontal cortex [126], although the presynaptic
localization is at odds with other evidence [43,75]. In a similar vein, drug actions on other brain
regions are expected to regulate the long-range synaptic inputs arriving at the dendrites. In the
medial frontal cortex, inputs impinging on the apical dendritic tufts can arise from a variety of
sources (e.g., thalamus, amygdala, and other cortical regions) [127], and neuromodulatory inputs
such as dopaminergic terminals can play a crucial role [128]. The extent to which these additional
layers of micro- and mesoscale circuit interactions relate to the plasticity actions of ketamine and
serotonergic psychedelics will be a key question for future research (Box 1).

Concluding Remarks
In summary, ketamine and serotonergic psychedelics have sparked interest as potential ground-
breaking neuropsychiatric therapies. Our current understanding of these compounds suggests
that the diverse drug actions converge around dendritic signaling. Given that the hypothesized
mismatches in opposing actions can have important ramifications for plasticity and selectivity of
drug targets, a promising avenue for future exploration will be to clarify the details of the competing
mechanisms (see Outstanding Questions). By uncovering the neurobiology for how drug actions
translate into sustained symptom improvement, basic science research can reveal critical insights
into how to use and innovate on these emerging pharmacological therapies to best serve patients.
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