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Abstract

Rodent models are an invaluable tool for studying the pathophysiological mechanisms underlying stress and depressive

disorders. However, the widely used behavioral assays to measure depressive-like states in rodents have serious limitations.

In this commentary, we suggest that learning tasks, particularly those that can be analyzed with the framework of rein-

forcement learning, are ideal for assaying reward processing deficits relevant to depression. The key advantages of these

tasks are their repeatable, quantifiable nature and the link to clinical studies. By optimizing the behavioral readout of stress-

induced phenotypes in rodents, a reinforcement learning-based approach may help bridge the translational gap and advance

antidepressant discovery.

Keywords

chronic stress, depression, antidepressant, decision-making, anhedonia, reward learning

Received 10 December 2020; accepted 10 December 2020

Introduction

Depression is a debilitating and prevalent disorder char-
acterized by a constellation of symptoms including low
mood, amotivation, and cognitive impairments.
Anhedonia manifests in depressed subjects due to
blunted responsiveness to positive outcomes, suggesting
underlying neural dysregulations in reward-guided deci-
sion making.1,2 Rodents can be an invaluable tool for
modeling this particular aspect of the disorder, allowing
researchers to manipulate the brain at molecular, genet-
ic, and circuit levels to gain insight into the pathophys-
iology. By studying stress paradigms as rodent models
for depression, there is hope for determining the neural
mechanisms underlying maladaptive behaviors and iden-
tifying novel antidepressants.

However, efforts to translate findings from animals to
humans have been hampered by limitations of current
rodent behavioral assays. Traditionally, the depressive-
and anxiety-like states in rodents are evaluated by
administering a battery of tests including tail suspension,
forced swim, sucrose preference, urine sniffing, and
others. Although these tests have undoubtedly provided
important insights into the etiology of stress-induced
dysfunctions, the behavioral assays have several notable
shortcomings. One, many assays cannot be repeatedly
administered because animals can develop coping

strategies against simple challenges. Two, measurements
are prone to subjective error because behavioral
responses are often scored based on visual inspection.
Three, because the assays have no clinical counterparts
in humans, any alterations – measured as immobility
duration, sucrose consumed, time spent sniffing, and
so forth – have to be interpreted anthropomorphically
to relate to depressive-like states in humans.3 Due to
these shortcomings, such behavioral assays should not
be used as the sole readout in experiments, as they are
susceptible to detecting false positives. Thus, there is a
need to expand the battery of tests for evaluating rodent
models for depression, specifically including behavioral
assays that are more repeatable, more quantitative, and
more relatable to human behaviors.
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In this commentary, we suggest that reward-based
learning tasks – particularly those that can be analyzed
within the framework of reinforcement learning – are
ideal for characterizing reward processing dysfunctions
in rodent models for depressive-like behaviors.

What is reinforcement learning?

It is a natural and adaptive process for animals and
humans to select actions that will maximize rewarding
outcomes. This requires the subject to learn from past
actions: choices that result in a positive outcome should
be repeated, whereas choices that yield lower rewards
than expected, or even punishment, should be avoided.
It is important to note that, if the environment is stable
(actions always lead to the same outcomes), a subject
can quickly grasp the best options and no longer has
an incentive to learn. By contrast and more in line
with real-life situations, if the environment is dynamic
(action-outcome contingencies can change over time)
and uncertain (the same action can lead probabilistically
to different outcomes), a subject must continually learn
from prior experiences and outcomes to adapt to the
changing environment. Rats and mice are adept at
such dynamic adjustments in foraging tasks.4–7

Reinforcement learning is a computational frame-
work for understanding the learning that occurs in a
dynamic and uncertain environment. It provides a set
of equations that fully describe how a subject would
perform in a reward-based learning task. The equations
are fitted to empirically measured behavioral data, and
parameters of the equations are extracted. Subsequently
these learning parameters and equations can be applied
to predict how the subject would perform in other tasks
and learning situations. Furthermore, distinct learning
strategies can be encapsulated by posing different sets
of equations (e.g., Q-learning, Bayesian updating, etc.).
The fits to empirical data can be compared rigorously
through model selection to determine the learning strat-
egy that is most likely employed by the subject.

More repeatable

An advantage of reward-based learning tasks is that the
assays are is repeatable. By design, each session involves
upwards of several hundreds of trials. Animals can be
tested repeatedly across multiple sessions, because the
environment is dynamic and subjects have to continually
adapt throughout the assay. This is in stark contrast to
traditional behavioral tests where repeated measure-
ments often lead to variable outcomes because animals
can develop coping strategies in a stable task. For exam-
ple, in forced swim tests, a shift from escape behavior to
immobility is interpreted as a readout of behavioral
despair. However, over successive tests, animals can

learn to cope in the task by floating – an alternative,
confounding strategy that appears as sustained immobil-
ity, leading to inaccurate results over repeated
measurements.8

The ability to take repeated measurements in a behav-
ioral task is advantageous because it allows for within-
subject design, which has greater statistical power than
between-subject design. Moreover, the same animals can
be assessed before, during, and after stress exposures or
pharmacological manipulations, enabling researchers to
identify the latency and duration of stress and drug
effects and study the associated neuronal changes
throughout the time course. Studies that have investigat-
ed the longitudinal effects of chronic stress have revealed
that successive stress episodes are associated with accu-
mulating deficits in reward-guided actions, which are
accompanied by progressive modifications in neuronal
activity.9–11

More quantitative

A single session of a reward-based learning task typically
consists of several hundreds of trials. The large data set
ensures accuracy in the fitting of the reinforcement
learning equations and confidence in the extraction of
defined learning parameters. The learning parameters
have predictive power; providing a quantitative value
assigned to the impact of the experimental manipulation
that can be compared across studies (Figure 1). Take the
example of a pharmacological manipulation of Drug A
that causes the learning rate to drop by 10%: the alter-
ation in the subject’s performance in any reward-based
learning task can be simulated computationally. Next, if
another compound, Drug B, reduces learning rate by
20%, then its impact can also be simulated and the dif-
ference in their efficacies in altering a subject’s decision
tendency can be determined exactly. In other words,
researchers can make quantitative statements about
changes due to experimental manipulations. By contrast,
with traditional behavioral tests, the metrics are not
easily comparable. For example, if Drugs A and B
reduce immobility in tail suspension by 10 versus 20%,
or in tail suspension by 10% versus in forced swim test
by 20%, what does that say about the drugs’ relative
efficacy? It would be unclear if that should be interpreted
as a small or big difference. Thus, the quantitative
parameterization of behaviors afforded by reinforce-
ment learning is a principled way to assess stress-
induced alterations.

More relatable to human behaviors

Decision-making with uncertainty and in a dynamic
environment not only requires continual learning in ani-
mals, but is also a non-trivial problem for humans.
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Therefore, humans can be tested on similar reward-

based learning tasks and reinforcement learning can be

likewise applied to analyze the decision-making process.
This approach has been used to study humans under

stress or suffering from depression symptoms. For exam-

ple, stressed subjects favor habitual behaviors at the

expense of goal-directed actions in instrumental learn-

ing.12 Patients with major depressive disorder show

blunted responses to feedback information, including a

hyposensitivity to reward and deficits in response to neg-

ative feedback.2,13 Based on these results and other
work, it has been argued on theoretical grounds that

defects in specific learning parameters in reinforcement

learning may capture aspects of depression.14,15 Indeed,

recent empirical studies found that depression and use of

antidepressants are associated with altered learning

parameters.16,17 Looking forward, the findings in

humans can be studied in greater detail in rodent

models, where researchers have the ability to investigate
which experimental manipulations or interventions can

influence those learning parameters, ultimately provid-

ing insight into the pathophysiology of the disorder.

Therefore, reinforcement learning presents a potential

translational link between rodent stress models and clin-

ical studies.

Limitations and outlook

It is important to note the challenges ahead for using

reinforcement learning to study rodent models for

depression. First of all, it has not yet been fully estab-
lished how chronic stress affects rodents’ decisions in

tasks involving an uncertain and dynamic environment.

However, several lines of evidence suggest a reasonable

anticipation of deficits. For example, rats subjected to

chronic unpredictable stress become insensitive to

changes in outcome value in operant devaluation

tests.18 With social stress, defeated animals had dimin-

ished flexibility, being unable to shift their behavior in

response to switches in action-outcome contingency.11

Furthermore, conventional and fast-acting antidepres-

sants induce notable effects on performance of wild

type rats in a probabilistic reward learning task.19

It is crucial to recognize that reward processing defi-

cits represent only one dimension of human depression.

Given the heterogeneity and range of impairments asso-

ciated with depression, modeling the disorder in rodents

is challenging and unlikely to recapitulate the full extent

of symptoms in humans.3 With the limitations in mind,

there remain definitive advantages for pursuing reward-

learning tasks based on the framework of reinforcement

learning as novel assays to evaluate rodent models of

depression. The more repeatable, quantitative, and relat-

able approach promises to facilitate the translation of

findings in animal models to improve diagnostics and

identify new treatment options for depression.
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Figure 1. Schematic depicting how applying reinforcement learning can provide quantitative parameterization of stress or drug-induced
alterations of behavior.
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