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Same lesson, varied choices by frontal cortex
In an unfamiliar situation, animals display variable choice behavior. Based on computational modeling and empirical 
data, a new study suggests that the variability in decision-making across individuals is driven by differences in 
internal neural dynamics in the medial frontal cortex.
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The goal of many neural circuits is 
to perform a behavioral function. 
To achieve this goal, a myriad of 

circuit configurations may be possible and 
equally up to task. For example, in the 
stomatogastric ganglion, a simple circuit 
of about thirty neurons, it was estimated 
that hundreds of thousands of disparate 
implementations of the network, each 
with distinct values for synapse strengths 
and neuron properties, are capable of 
generating the same desired motor output1. 
While the many implementations are 
seemingly indistinguishable in terms of 
learned outputs, what if they have to face 
an unfamiliar situation and perform a 
behavioral function beyond the initial 
goal? A new study in this issue of Nature 
Neuroscience asks this question in the 
context of decision-making. The authors 
show that rats and computational models 
displayed diverse choice behavior when 
tested on unfamiliar stimuli and that this 
behavioral variability across individuals 
relates to the neural activity dynamics in the 
medial frontal cortex2.

In rodents, decision-related signals are 
prevalent in the frontal cortex. Specifically, 
in the medial frontal cortex (including 
the medial agranular cortex in rats and 
secondary motor cortex in mice), many 
neurons show differential firing activity 
for one choice over another3,4. This neural 
signal for choice emerges early in decisions. 
In a dynamic foraging task in which rats 
select between two paths for probabilistic 
rewards, choice signals arise in medial 
agranular cortex before the rat physically 
indicates its decision3. The choice-related 
signal is also task-specific. When mice need 
to switch between multiple auditory–motor 
mappings, choice-related neural signals in 
secondary motor cortex are modulated by 
the behavioral context4. The prominent, 
early, and task-specific nature of the choice-
selective activity in the medial frontal cortex 
suggests a central role for this region in 
mediating action selection. However, so 
far most prior studies have relied on over-
trained stimuli and well-defined behavioral 

situations. It is still unclear to what extent 
the medial frontal cortex may help animals 
decide in novel situations, when stimuli are 
unfamiliar.

By recording from an ensemble of 
neurons in the medial frontal cortex, we 
can obtain a precise account of the time-
varying neural activity in single trials, 
which provides a glimpse into the decision-
making process. In monkeys performing 
a two-choice discrimination task, there 
are moment-by-moment fluctuations in 
the population activity, perhaps reflecting 
animals weighing between alternative 
options, with large vacillations indicative 
of a ‘change of mind’5. Trial-by-trial 
fluctuations in the population activity 
can also be detected in the frontal cortex 
of rodents that are learning or switching 
between sensorimotor rules4,6. These 
moment-by-moment and trial-by-trial 
variations and, more broadly, the overall 
temporal dynamics of ensemble activity, 
must be underpinned by the recurrent 

architecture of the frontal cortex7. However, 
mechanisms for how a recurrently 
connected network could support, guide, 
and constrain a variety of neural dynamics 
remain to be elaborated.

To ask how neural variability may relate 
to behavioral variability, Kurikawa and 
colleagues tasked well-trained rats with 
classifying unfamiliar sensory stimuli2. 
Initially, rats were trained to respond 
with a left or right lick for a low- or high-
frequency tone, respectively. After rats 
reached a performance criterion, they 
were tested on five unfamiliar tones with 
frequencies in the intermediate range, 
in addition to the two familiar tones. 
Rats displayed variability in their choice 
behavior for unfamiliar tones. Some 
rats were sensitive to tone frequency, 
responding to the intermediate tones 
by calibrating the proportion of left and 
right choices. Other rats were insensitive, 
choosing with a strong bias for one of the 
sides irrespective of the tone frequency.
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Fig. 1 | Internal neural dynamics in the medial frontal cortex as a determinant of choice behavior. The 
time-varying population activity in the medial frontal cortex can be visualized in a high-dimensional 
space as a trajectory (black line). In response to random perturbations (yellow arrow), the population 
activity may be pushed to divergent locations or remain adherent to the same path, indicative of the 
stability of the internal neural dynamics. In rats, this internal property of the frontal cortical network is 
shaped by task learning and correlates with an animal’s choice behavior in a novel situation in terms of 
sensitivity to unfamiliar stimuli. For the purpose of illustration, the rat’s choices were drawn to include 
orienting movements.
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To gain insights into how the behavioral 
variability emerges, the authors constructed 
a computational model. This model is based 
on reservoir computing, a class of models 
known to generate rich activity dynamics 
that parallel firing patterns measured in the 
frontal cortex8. Briefly, the model consists 
of a reservoir of spiking neurons that are 
randomly connected, with a distribution of 
synapse strengths. The reservoir receives 
stimulus-tuned inputs and is read out by 
a pair of output neurons that also provide 
feedback to the reservoir. Only synapse 
strengths from the reservoir to readout 
neurons are modifiable through a reward-
based learning rule. When Kurikawa and 
colleagues trained this model on the task 
with only two stimuli, many networks 
with different initial configurations could 
learn to solve the task and achieve high 
performance. More interestingly, when 
these networks were tested subsequently 
on the full task, they displayed a variety 
of sensitivity to unfamiliar stimuli, much 
like what was observed in animals. The 
modeling approach thus enabled in silico 
tests of hypotheses regarding the neural 
mechanisms that are difficult to test with 
experiments.

What features of the neural dynamics 
may underlie the variability in choice 
behavior? The authors surmised that a 
key parameter might be the stability of 
the population activity dynamics at the 
time when the stimulus is presented. To 
test this idea in silico, they determined 
stability in model networks by applying a 
perturbation and then simulating how the 
network activity would evolve. By repeating 
and randomizing the perturbation, they 
quantified the divergence of the perturbed 
network activity. Essentially, they were 
evaluating the landscape in neural activity 
space around the time of cue onset. They 
found that in model networks, a large 
spread in response to perturbations, which 
indicates a shallow local landscape and low 
stability, correlates with greater variability in 
the network’s choice selection to unfamiliar 
stimuli (Fig. 1).

Experimentally, measuring the local 
landscape in neural activity space is difficult. 
To test whether this relation between 
neural stability and behavioral variability 
holds for rats, Kurikawa and colleagues 
decided instead to measure a surrogate 
of neural stability in their data: the trial-
by-trial variability in neural activity. Here 
they found empirical support, albeit in 
a modest number of animals, that this 
proxy of neural activity stability correlates 

with the variability of choice behavior for 
rats. Further empirical evidence would 
be desirable and may be possible in the 
future by perturbing neural dynamics with 
more precision, for example using cellular-
resolution optogenetics9 or through a brain–
machine interface10.

Overall, the framework of training 
animals and model networks on a 
particular task and then examining how 
they generalize in a novel condition is a 
fascinating problem. The current study 
highlights a neural substrate for this process. 
Specifically, traces of prior learning may be 
detected in the internal neural dynamics, 
which manifest as important determinants 
for current decisions. This conclusion 
made by Kurikawa and colleagues builds 
upon a couple of prior findings. The idea 
that variability in the neural dynamics at 
present may be attributed to past experience 
is consistent with results in the mouse 
posterior parietal cortex during evidence 
accumulation11, although the timescale for 
this earlier work was much shorter and on 
the order of individual trials. Moreover, 
there is strong evidence that trial-by-trial 
variability in neural activity is quenched 
during preparatory periods, such as before 
the onset of a movement12. The reduced 
neural variability had been taken as evidence 
that the network is optimizing for the 
impending behavior. The current study 
agrees with this view and suggests that the 
amount of neural variability depends on 
prior training.

The study illustrates the power of going 
from experiments to computational models 
and then back to experiments. However, 
the study has a few limitations as well. 
Choice behavior for animals likely involves 
brain systems beyond the frontal cortex. 
Behavioral variability could originate 
from sources such as motivation and 
arousal, independent of the frontal cortex. 
For model networks, neural and choice 
variability presumably arise from how 
reservoir networks with different initial 
settings respond to reward-driven learning. 
However, only several dozen networks 
were tested, whereas the parameter 
space is extremely large and is therefore 
underexplored. Finally, the generalization 
task relies on interpolation. By contrast, 
one may try a task requiring extrapolation, 
by testing tones beyond the initial 
frequency range or stimuli in a different 
auditory dimension. Extrapolation is a 
more difficult challenge that is relevant  
to the transfer-learning problem in 
machine learning.

To conclude, the finding that variability 
in decision-making across individuals relates 
to an underlying feature of the internal 
neural dynamics, which is imparted by 
prior learning, is an intriguing proposition. 
Studies that can link neural ensemble 
dynamics with behavior are crucially needed 
if we want to test the previously proposed 
functions for the rodent medial frontal 
cortex in decision-making13,14. Behavioral 
variability across individuals is expressed 
in unfamiliar situations, but can also be 
exacerbated by neuropsychiatric disorders. 
One could speculate that altered landscape 
in the neural activity space, as reported 
for mouse models of schizophrenia15, may 
explain the abnormal range of behaviors. 
Therefore understanding how normal 
and maladaptive learning modify neural 
dynamics may carry significance for both 
basic science and translational research. ❐
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